CARL WAGNER

THE FORMAL FOUNDATIONS OF LEHRER’S
THEORY OF CONSENSUS!

Introduction

The challenge of devising rational methods for achieving group consensus
has ‘provided decision theorists with an important class of practical and
theoretical problems. How should group deéliberation be structured in
order to enhance the exchange and thoughtful consideration of relevant
information and maximize the possibility of agreement? Are there
defensible ways of combining the opinions of individuals who disagree
even after exhaustive discussion? Can we develop a comprehensive
theory of group rationality and perhaps refine our understanding through
the discovery of limitative metatheorems, which have so often been the
mark of mature axiomatization?

Suppose that a group wishes to arrive at a consensual preferential
ordering of some set of alternatives. Each member of the group votes by
reporting his own pattern of preference and indifference among these
alternatives, and the problem is to devise a fair rule for combining the
votes to produce a group ordering. An obvious candidate is the majority
rule: the group prefers a to b when a majority of its members do so, and if
there is no majority for a over b or b over g, the group is indifferent
between these alternatives. As attractive as this rule seems, it breaks
down in the face of certain preference profiles. Suppose that individuals
1, I, and I, order alternatives a, b, and c as follows:

{, 1, 1,
a ¢ b
b a c
C b a
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Since I, and I, prefer a to b, and I, and I, prefer b to ¢, the group must do
llkeWISe But I and I, prefer c to 4, and this majority preference cannot
be mcorporated in the group ordering since it would violate the transitiv-
ity of the preference relation. This voter’s paradox, discovered by the
eighteenth-century philosopher and social scientist Condorcet, stimu-
lated a search for methods which would produce a group ordering from
any profile of individual orderings.

Borda, also in the elghteenth century, suggested a rule based on the
following method of assigning a score to each alternative: An alternative
a receives as its Borda count B(a) the sum, taken over all individuals, of
the number of alternatives ranked strictly below a. Then the group ranks
a over b if B(a) > B(b) and is indifferent between them if B(a) = B(b).
This method always leads to a well-defined group ranking, but the
fairness of the results is sometimes questionable, as in the case of the
profile

oL
a a b
b b c
c c d
d d a

Since B(a) = 6and B(d) = 7 the group must rank b overaeven though a
majority favor a over b,

Following Condorcet and Borda many other scoring methods were
proposed and, indeed, employed in practice, but none proved to be
entirely invulnerable to criticism. Finally, in 1951, the economist
Kenneth Arrow argued in the monograph, Social Choice and Individual
Values, that all efforts to discover a rational, democratic, universaily
applicable method of amalgamating individual preferences were doomed
to failure. Arrow’s strategy involved, first of all, viewing amalgamation
rules as abstract mappings from the set of all preference profiles to the set
of all preferential orderings. All such mappings, which he called social
welfare functions, yield universally applicable rules since their domain is
required by definition to include all possible profiles.

Next Arrow argued that any rational, democratic social welfare
function ‘would necessarily satisfy four conditions, which he labeled
positive association of social and individual values, independence of
irrelevant alternatives, citizens’ sovereignty, and nondictatorship. He then
proved, in what is now known as the Arrow Impossibility Theorem. that
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any social welfare function satisfying the first three of these conditions
necessarily violates the fourth.? In short, there are no rational, demo-
cratic social welfare functions, One can attempt to mitigate the implica-
tions of this theorem by arguing that a weaker characterization of rationai
democracy is acceptable, or by dropping the requirement that the domain
of a social welfare function consist of all possible preference profiles. But
the Impossibility Theorem remains the point of reference for such
maneuvers and thus continues to exercise limitative force.

Decision problems in which an individual’s input is limited to a report
of his preferences among alternatives comprise an important, but by no
means exhaustive, subclass of the problems encountered by decision-
making groups. Problems involving measurement, resource allocation,
or the estimation of probabilities, for example, yield unavoidably a vector
of numerical individual opinions. In such cases the role of the afore-
mentioned social welfare functions is played by functions which map a
numerical vector to a single (consensual) number. In practice the familiar
averaging functions of elementary statistics such as the median and the
mean (both arithmetic and geometric) have been employed in this
capacity, justified by a few brief remarks about their ‘centralizing’ effect.
These simple averages have the property of giving equal weight, in some
sense, to all individual opinions. Now while groups of adversaries may
have no recourse but to compromise with an average of this sort, it is clear
that an ideal community of disinterested truth seekers should avail itself
of an average weighted to reflect the expertise of its members. Thus, for
example, the arithmetic mean (a, + a, + -+ - + a,)/n of a vector of
opinions should be regarded as just one of an infinite number of possible
averaging policies provided by the class of weighted arithmetic means
W, + Wy, + 00+ wya,, where 0=w, = landw +w, + -+
w, = 1. The formal core of Lehrer’s theory of consensus represents
nothing less than an attempt to equip decision-making groups with a
method for reaching a rational consensus as to which sequence of weights
to employ in arithmetic averaging. This essay is devoted to a summary
and assessment of that method.

1. Weighted Averaging.

Suppose that a decision-making group with n members wishes to deter-
mine consensual values of one or more numerical variables. Suppose
further that after extensive research and discussion no one wishes to

167



CARL WAGNER

convey additional information to the group or to seek further information
from any other individual. This state of the decision-making process,
which Lehrer calls dialectical equilibrium, may be summarized by a
matrix A = (a,) with n rows and one column for each variable, a,
denoting individual i’s estimate of the most appropriate value of variable
J. Thus exact consensus obtains precisely when the rows of A are
identical. In practice, of course, a group may be satisfied to arrive at a
state which only approximates that ideal. If, for example, the differences
between the largest and smallest entries in each column of 4 are
uniformly bounded by some agreeably small positive constant, a group
may reasonably terminate its deliberations by simple averaging of the
columns of A. But how should a group proceed if A fails even to exhibit an
acceptable approximate consensus? As disinterested, non-egotistical
truth seekers, the individuals involved will not resort to coercion; only the
forces of rational argument may be brought to bear on others. Thus a
state of nonconsensual dialectical equilibrium presents something of an
impasse, for such forces appear to have been given fuil play.

Lehrer’s response to this dilemma has been to argue for the relevance
of what he calls ‘social’ information and to specify a formal technique for
incorporating such information into the deliberative process. He has
maintained that rational decision makers need not restrict their attention
to, say, the physics of the problem at hand, but may if necessary admit as
data their considered perceptions of the expertise of their fellow
physicists. Now critics of this view, while perhaps allowing that social
psychologists might wish to document the situations in which social
information carries any force,? might ftatly assert that such considerations
are clearly inimical to rational deliberation. But disciplining decision
making groups with a rigorist regimen involving the analysis of exclus-
ively hard data is both unrealistic and unnecessary. Group deliberation,
after all, typically involves exchange, not only of indisputable facts and
inferences, but also of interpretations, intuitions, and guesses which
cannot be supported by rigorous logical or statistical arguments. Groups
under no compulsion to come to an immediate decision might, of course,
exclude such impressionistic data from consideration, and decline to
adjourn unless enough hard data emerges to settle the issue. But those
unable to conceive of (or perhaps afford) further relevant factual
research may be forced to take account of softer kinds of data. Consider-
ation of such data must, according to Lehrer, include as an essential
component evaluation of the individual who advocates its cogency.
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Those having no objection to such evaluations may assert, however,
that they will typically already have been carried out (in perhaps un-
systematic ways) during discussions preceding dialectical equilibrium,
and thus offer nothing that could resolve nonconsensus. In fact, Lehrer’s
original scheme for modifying A on the basis of social information is
vulnerable to this charge. Fortunately, there is a way of regimenting the
deliberative agenda so that the normative algebra which he has devised
can function without redundancy. Discussions preceding dialectical
equilibrium are simply to be carried on through exchange of anonymous
position papers.* This arrangement forces individuals to evaluate the
opinions of others without taking their identities into account.? They will
thus delay final evaluation of the more impressionistic assertions of
others, having at this point incomplete criteria for such an evaluation.

If at dialectical equilibrium the matrix A exhibits an unacceptable
deviation from consensus, authors of the position papers are identified,
and individuals turn their attention to construction of an # X n weight
matrix W = (w,,) with nonnegative entries and all row sums equal to 1.
Lehrer has characterized his approach to the meaning and determination
of these weights as subjectivist. Thus it will suffice for this discussion
simply to regard wy; as that part of a unit vote which, after complete
discussion, individual / is willing to proxy to individual j on the basis of his
respect for j as an evaluator of the numerical variables of A. By contri-
buting the row w;,, wy, . . ., W, to W, i commits himself to revise his
entry a; of A to & = w,a,, + wua,; + » + - + wya,; If each individual
so revises the entries of his row of A, the resulting matrix A = (&) is
simply the matrix product WA.®

It is of interest at this point to remark on several simple theorems about
matrix multiplication which guarantee that the shift from A to WA
satisfies certain intuitive conditions of minimal rationality. One feels, first
of all, that A’ = WA should not register greater disagreement than A
itself. This is in fact the case, for regardless of the entries of W, itiseasy to
check that the largest and smallest numbers in the jth column of A never
lie outside their counterparts in A. In particular, if A is already a
consensus matrix, then WA = A for any W, so that consensus, once
attained, is undisturbed by the procedure under discussion. Finally, if W
is a consensus matrix, the same is true for WA, for each individual & shifts
his a,; to the same weighted arithmetic mean of the numbers in the jth
column of A.

In view of the above observations, it is clearly desirable for a group
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faced with nonconsensus in A to aim for the construction of a consensual
weight matrix W. Thus W, like A, ought to represent a state of dialectical
equilibrium, preceded by a full discussion. The subject of discussion is
now, however, the expertise of members of the decisionmaking group, as
indicated by their prior achievements and consequent reputation, as well
as their recent, now identified, performance as authors of the first set of
position papers. It is to be hoped that the group will arrive at a matrix of
weights for which WA exhibits at least an acceptable approximate
consensus.” It seems, indeed, that the failure of such consensus will
simply create a higher level impasse. I describe in the next section a
method proposed by Lehrer to resolve such a dilemma.

2. Kteration.

Suppose that the shift in group opinion from A to A = WA does not
yield an acceptable approximation of consensus. Note that the entries of
A, like those of A, express individual opinions (albeit revised ones) of
the most appropriate values of the initial decision variables. Lehrer now
asks under what circumstances individuals would be willing to accord the
same weights to these revised opinions as they granted to the original
opinions, and thus shift from A" to A’ = WA, He argues that this will
be the case precisely when individuals respect each other’s assignments of
weights in W to the same degree as their assignments of values to the
decision variables in A. Thus, for example, if values of physical variables
are at issue in A, the move from A™ to WA is rational if and only if all
individuals are seen as possessing uniform, though perhaps individually
differing, skills as physicists and as judges of physicists.

An attractive informal argument for this claim may be based on
viewing the shift from A to A"’ under such circumstances as moving
individual opinions to a new plateau, but one on which opinions have the
same relative strengths as their counterparts in A. Lehrer’s formal
argument is as follows: Ignore temporarily the matrix A and multiply W

by itself. The i-jth entry w,w ; + wyw,; + « - - + wy,w,, of W?is a rational
revision of the weight w,; which i granted to j as a physicist, since it is a
weighted average of the opinions w ;, w,,, . . ., w,, on this matter, with
coefficients determined by the weights w,, w,, . . ., w,, which i has

granted to individuals as judges of physicists. Hence W2 A is a revision of A
based on more information than the revision WA. But by the associativity
of matrix multiplication, W24 = (WW)A = W(WA) = WA = A®D,
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The above procedure may be iterated to the extent that individuals
perceive each other as possessing uniform higher level judgemental skills.
Thus if individuals are regarded as being as equally skilled judges of
judges of physicists as they are judges of physicists, W* may also be
regarded as a rational revision of weights granted to individuals as judges
of physicists, and W*W = W? as a rational revision of weights granted to
individuals as physicists. Hence WA = WA® = A® is a rational
revision of A incorporating still further information. At this stage one
may perhaps begin to feel mesmerised by the staccato rhythms of ‘judges
of judges of judges’ and assert, when one’s head clears, that judgments of
this increasingly complex kind cannot be meaningful. But the progressive
modification of A by increasing powers of W does not really require that
individuals assess their colleagues separately on an infinite hierarchy of
judgmental skills. So long as individuals have no reason for regarding the
opinions in any A"+ = WA™ as having different relative strengths than
those in A", they may rationally shift to WA"*"? = A"*2 In such cases
there arises an infinite sequence of (synchronic) modifications W, W*, W?,
etc. of W and a companion sequence A, WA, WA, etc. of modifications
of A. The conditions under which these sequences approach consensus
are discussed in the next section. '

3. Convergence to Consensus.

Given a weight matrix W = (w),) let us say. following Lehrer, that i
respects jif w,; > 0, and that there is a vector of positive respect from i to j if
there is some sequence of individuals, beginning with i and ending with j,
such that each individual in the sequence respects the person listed
directly after him in that sequence.” A matrix W for which there is some
vector of positive respect from every individual to every other individual
(and, hence, from every individual to himself) is known as an ergodic
matrix, A regulgr matrix is an ergodic matrix for which there is some fixed
positive integer  such that there is a vector of positive respect of length r
from every individual to every other individual, and from every
individual to himself. It may easily be proved by induction that for a given
ordered pair (i, j) of distinct or identical individuals, there is a vector of
positive respect of length r from i to j if and only if the i-jth entry of W™ is
positive. Hence W is regular if and only if some power of W has exclus-
ively positive entries, .

Ergodicity and regularity are concepts from the classical theory of

171



CARL WAGNER

Markov chains. This theory deals abstractly with square matrices having
nonnegative entries and unit row sums. Since it arose with a view toward
applications to probability theory its theorems are commonly phrased in
terms of probabilities rather than weights. But, recast in Lehrer’s
terminology, the basic results of this theory yield significant theorems
about group decisionmaking and consensus. The most important of these
theorems states that the increasing powers of a matrix W approach a limit
consensus matrix L with exclusively positive entries if and only if W is
regular. Hence the notion of regularity captures precisely those patterns
of respect which lead to a consensus in which each individual’s initial
opinions are accorded some positive weight, regardless of the initial state
of disagreement. 2

How does one compute in practice the entries of the limit consensus
matrix L? It may appear that one could only find an approximation to L
by raising W to some sufficiently high power, but there is in fact a simple
method for computing L exactly. If one denotes by A, A;, . . ., A, the
entries of the (identical) rows of L, these numbers turn out to be the
unique solution of the matrix equation (A, A, .. . A) W=1(},
Ape .o Ay )subjecttod, + A, €t A, = LB

The above observation leads to an elegant characterization of the
regular matrices which yield ultimate consensus in the form of a simple
arithmetic mean of the values of the initial decision variables. For it is
easy to check that (A, A;, . . ., A,) = (1/n, 1/n, . . ., 1/n) satisfies the
above simultaneous equations if and only if the sum of the entries in each
of the columns of W is equal to 1. Thus Lehrer’s method leads decision-
making groups to the intuitively reasonable policy of adopting simple
averaging precisely when each individual receives proxies which sum to a
full unit vote.

It should be noted in conclusion that there are regular matrices with
remarkably few positive entries. An interesting class of examples, due to
Lehrer, consists of the n X n matrices W in which each individual i grants
himself the positive weight 1 — w,, and individual i + 1 (or 1, if
i = n) the positive weight w,. For such matrices the consensual limit
weight received by i is givenby A, = (1/w)/(1jw, + 1fw, + - - - + 1/w,).
Thus the limiting weights are what mathematicians would call ‘weighted
harmonic means’ of the quantities w,, ,, . . ., w,. In particular, A /A, =
w,/w,, so that, for example, if i proxies away twice the weight proxied byj,
he will receive in the limit half the weight which j receives.
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4, Generalizations of Lehrer’s Model,

Having summarized the formal core of Lehrer’s theory of consensus, 1
wish now to sketch some possible generalizations of his model. Suppose
first that in diatectical equilibrium the weight matrix W is ergodic, but not
regular. There is thus a vector of positive respect from each individual to
every other individual and from each individual to himself, It seems
reasonable that such situations would involve a communication of respect
sufficient to lead the group to consensus. Indeed, one notes that a matrix
of this type fails to be regular only for lack of fulfilling a rather technical
condition on vector lengths. To be sure, this deficiency in W has
important mathematical consequences — the sequence W, W2, W3, etc.
simply does not converge if W is ergodic but not regular. But are there not
other rational routes to consensus in such cases?

As mentioned in Note 11, an ergodic matrix W having at least one
positive diagonal element w, is regular. Hence ergodic non-regular
matrices arise only if each individual proxies away his entire unit vote to
others. As infrequently as this may occur in practice it is desirable
nevertheless to have a method for deriving consensus in such situations. I
propose the following procedure: Let the group choose an agreeably
small positive constant € such that) < e < |. Let each individual grant
himseif the weight € instead of 0, and revise the weights that he grants to
others so that the ratios among those weights remain the same and all
weights sum to 1. Thus i will revise the weight w; which he granted to j to
(1 - €) wy, and W is replaced by U, = el + (1 — €)W, where I denotes
the n X n matrix in which each person grants himself weight 1. By proper
choice of e, U, can be made as ‘close’ as one wishes to W, and thus it seems
reasonable that there should be some U, which the group would agree to
employ in place of W. Now U, has positive entries where W does, so U, is
ergodic and has positive diagonal elements and is thus regular. Hence
there is a consensus matrix L, with exclusively positive entries such that
powers of U, approach L_as a limit and, as usual, L_is the unique solution
to the matrix equation L .U, = L.

It may be proved that L _is also the unique consensus matrix solution of
the equation LW = L_" from which it follows, remarkably, that the
choice of ¢ is irrelevant: any perturbation of W of the sort described leads
to the same consensual limit matrix L, where L is the unique solution to
the equation LW = L. Thus this simple algebraic relation stands at the
core of the theory of consensus, even as extended to ergodic matrices.
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Like Lehrer’s original model, the above extension is based on the
assumption that individuals are judged at least implicitly to be uniformly
talented at an entire theoretical hierarchy of deliberative tasks. But
suppose one wished to have a theory of decision-making which could
accommodate situations in which individuals might somehow have
explicit and differing perceptions of their colleagues with respect to this
hierarchy. ' In such cases the powers W, W?, W?, etc., would be replaced
by products W,, W,W,, (W,W,)W,, etc., of possibly different weight
matrices where, say, individuals grant weights to members of the group as
physicists in W,, as judges of physicists in W,, as judges of judges of
physicists in W,, etc. A more complete chscussnon of this case appears in
[15]. We shall mention here two basic results concerning circumstances
which guarantee that the sequence of products W,, W,W,, (W,W, W,
etc., converges to a consensus matrix. The classical proof of convergence
of powers of a single regular matrix'” admits a straightforward extension
to the following theorems:

THEOREM 1. Let di denote the smallest entry of W, If
lim,,.(1—d) (1-4d,)...(1—d)=0, then WW,_, ... W, con-
verges to consensus as i — x.

In particular, if for some d > 0 (no matter how small), there is ann (no
matter how large) such that/ = n implies d, = d, then convergence takes
place. This is a very weak assumption of minimal respect.'*

THEOREM 2. Leti,, i,, iy, etc., be any increasing sequence of positive

integers. Let U, = W, W, . WU, =W W, W et
and let ¢; denote the smallest element of U, If iim,_,,, (1 1)(1 e,)
. (1 — ¢) = 0,thenW,W,_, . . . W, converges toconsensusasi — =.

Theorem 2 specializes to Theorem 1 when i, =1, i, =2, etc. As
above, if for some e > 0, there is an n such that i = nimplies e, = e, then
convergence takes place. In particular, this condition obtains when the
sequence W,, W,, etc., converges to a regular limit matrix." Unlike the
simple case of powers of a single matrix, there is in general no way to
compute lim,_, W,W,_, . . . W, exactly. But convergence assures that a
group can in principle compute by repeated multiplication as close an
approximation to the limit as desired.
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5, Conclusion: Some Unresolved Problems.

Granted the acceptance of weighted arithmetic means as averaging
functions and a subjectivist determination of weights, the formal
mechanism underlying Lehrer’s theory is beyond reproach. For on these
assumptions the classical Markov chain convergence theorems are
incontestably relevant to the issue of rational consensus, and yield
significant insights about group decision-making.

These theorems entail, first of all, the impossibility of rational dis-
agreement where certain patterns of respect obtain among members of a
group. No such results appear in decision theoretic literature prior to
Lehrer’s work. Even in the context of averaging by weighted arithmetic
means with subjectively determined weights, earlier approaches were
stymied by the possibility of disagreement about the appropriate (first
order) weights, and intimidated by the specter of an infinite regress of
decision problems from facing up to a hierarchy of higher order weight
matrices. Yet in retrospect Lehrer’s notion of consensus as the limit of a
convergent Markov chain appears, to its credit, to be no more mystifying
than the notien of continuously compounded interest.?® At the same
time, conditions under which rational consensus may fail are clearly
delineated. For as noted above the failure of regularity (or ergodicity, if
one accepts my arguments in Section 4) vitiates the guarantee of con-
sensus. Given this limitative theorem, Lehrer’s results have much the
same character as the theorems of social welfare theory which show that
majority rule yields a rational consensus for certain kinds of voting
patterns while failing to effect consensus in general.

It should be noted, however, that Arrow's analysis of ordinal con-
sensus goes much further than a simple description of cases where
majority rule may be employed. For it rationalizes the limited use of this
rule (while also proving that no acceptable rule is universally applicable)
by showing that it satisfies certain very general properties which, it is
argued, characterize democratic rational social choice. Thus a full
analogue of Arrow’s results would require a general explication of
rational averaging in which weighted arithmetic means occupied no a
priori privileged position. Such an analysis would, at the outset, regard all
functions mapping opinion vectors to scalars as candidates for rational
averaging functions. One would then seek to exclude certain of these
functions ‘from above’ by noting that they fail to satisfy one or more
general features identified as intuitively rational. One might feel, for
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example, that any averaging function deserving the name ought always to
produce a number in the interval determined by the largest and smallest
values of each opinion vector. This axiom would exclude many functions
from consideration. Indeed, if one supplements this axiom with the
requirement that an acceptable averaging function be linear, it is easy to
show that one has abstractly characterized the class of weighted arith-
metic means.?! But linearity in this context seems a pleasant incidental
feature of such means, rather than an intuitively desirable basic property
of averaging functions It would be interesting to know if there is an
alternative characterization of weighted arithmetic means that does not
directly postulate linearity.*

In addition to the above, there remain some interesting open questions
of a more localized sort. For even within the context of averaging by
weighted arithmetic means, the issue of the meaning and determination
of the weights deserves further attention. Violent opponents of subjecti-
vist estimation will of course remain unconvinced of the value of any
enterprise which seeks to quantify in this mode. But more can profitably
be said to those inclined to sympathy, however tentative it may be. Totell
an individual that his weights should sum to 1, that they shouid reflect his
respect for the expertise of members of his group, and that they should be
chosen with a willingness to employ them in weighted averaging, is, after
all, to provide minimal guidance for an important task.

Given the great variety of decision problems it is unlikely that a
detailed, comprehensive treatment of weights can be achieved. Worth-
while insights may nevertheless emerge from the study of special cases.
Suppose, to take an example due to Lehrer, that » individuals are given a
collection of N objects, each bearing a label from the set {1, 2, . . ., k},
and must determine the fraction p, of objects bearing the label j for each
f=1,2, ...,k Suppose further that the collection is partitioned into r
disjoint subsets, and that individual { examines a subset with ¥, objects
and reports, foreachj = 1,2, . . ., &, the fraction p;;of objects in that set
which bear the label j. The n X kmatrix A = (p,)) will only rarely exhibit
consensus. But the rational sequence of weights w , w,, . . ., w, with
which to average the columns of A is immediately apparent. Individual i
should receive a weight proportional to the size of the set which he
examines, so that w, = N/N. For assuming that individuals count
correctly, it is easy to check that p, = wp, + wyp,, + -+ + wp,
correctly reports the fraction of objects in the entire set which bear the
label j. Artificial as this simple combinatorial exercise may be, it illus-

176



LEHRER’'S THEORY OF CONSENSUS

trates in pure form the type of decision problem in which deliberative
responsibility is partitioned in such as way that committee reports are
accorded full credibility but weighted to reflect the scope of their unique
concerns. An elaboration of this notion involving judgment based on
weighted criteria appears in [15].

At the other end of the spectrum one encounters cases like the
following, which is borrowed from classical statistical decision theory:
Individuals are attempting with unbiased devices of differing accuracy to
measure a quantity u. Their actual estimates a,, a,, . . ., g, of this
number are regarded as realizations of a sequence of independent
random variables X, X,, . . ., X, with E((X, — u)?) = o?. If, as is often
the case, the variance is taken as a measure of the expected disutility of
adopting the estimate produced by a random variable, the group should

adopt as their estimate of u the number wa,, + - - - + w,a,, where the
weights w, are chosen to minimize E((w X, + - -+ + w X, — p)?) =
wiol + wioh + -+ - + wigi A little partial differentiation now yields

the formula w; = (1/6})/(1/02% + 1fof + « - - + 1/o?). In decision-
making contexts like the one under discussion one might initially have
been inclined to endorse the estimate of the individual with smallest
variance as the rational group estimate. Yet sucha policy is demonstrably
inferior (with respect to variance minimization) to the use of the above
weighted average. One might roughly characterize this result as an
indication of the wisdom of collective deliberation on a single matter,
even where some individuals are more expert at this matter than others.

The foregoing exampies illustrate rational approaches to the choice of
weights in several highly simplified contexts involving little or no sub-
jectivist estimation. Yet they point to two important considerations in the
evaluation of individual expertise: To the extent that an individual offers
a unique point of view on a problem, what is the scope of his field of
vision? To the extent that he is engaged in communal deliberation, how
shall his contribution to the avoidance of error be weighted? To take
these difficult questions seriously, as Lehrer urges, is to view individuals
as indicators of truth quite as deserving of analysis, evaluation, and
improvement as the technological instruments which they often invent to
assist their thinking about the world. )

University of Tennessee
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Notes

' This essay was prepared while the writer was a Fellow at the Center for Advanced Study in
the Behavioral Sciences. I am grateful for financial support provided by the National
Science Foundation (BNS 76-22943 A 02), the Andrew W. Mellon Foundation, and the
University of Tennessee.
* The original proof of this theorem appears in Arrow [1]. A particularly clear exposition,
including a survey of recent developments, appears in Roberts [13].
* A number of years ago French[3] and Harary[4] initiated just such a study of group power
structures, based on the theory of homogeneous Markov chains. Lehrer's simplest norma-
tive model is based on this same mathematical structure, though rationalized from a wholly
different perspective.
1 This scheme. endorsed by Lehrer in[12], is described in detail in [15). A related method,
the ‘Delphi technigue’, appears in Helmer {5].
3 This will not be the case if only two individuals are involved. Even in larger groups,
individuals may reveal themselves to others through a previously known expository style or
philosophical orientation. In such cases individuals need to exercise a certain deliberative
discipline to supplement that imposed by the format of anonymous position papers.
¥ The essentials of matrix algebra may be found in Kemeny and Snell [6, Section 1.11].
7 However, consensus may fail in both A and W, yet obtain in WA. See [15, Section 4],
¥ Asone would hope, a sufficiently close approximation to consensus in W can communicate
an adequate approximate consensus to WA. See[15, Note 2} for a precise formulation.
* Anindividual may be listed more than once in such a sequence. If, for example, i respects
himself, then [i, {] is a vector of positive respect (of length 2) from i to himself. Of course,
evenifi does not tespect himself, there may be a vector of positive respect fromi to himself.
" This is the usual practical criterion for regularity. In fact, if Wisn X n, one need compute
at most the powers W, W2, . . ., We*-m+2, for regularity always reveals itself, if at all,
through the appearance of a matrix with exclusively positive entsies somewhere in this finite
list. (See Seneta [14] for a proof.) Thus there is what logicians call an effective procedure for
determining regularity. Regularity also clearly follows from ergodicity, given the existence
of at least one individual who respects himself. But there are regular matrices in which no
one respects himself. Indeed, if W = (wy) is any n X 1 matrix with w, = wy =
* = Wy, = 0and all other entries positive, then W? has exclusively positive entries.
' See Kemeny and Snell [6, Section 4.1] for a fuller discussion.
" For it is easy to check that if increasing powers of W converge to a consensus matrix with
exclusively positive entries, then for every matrix A with n rows, WA, W2A, etc. converges
to a consensus matrix in which each individual’s opinions in A are given some positive
weight. Conversely, if WA, W2A, etc, converges to such a matrix for every A, then W must
be regular since convergence holds in particuiar for the n X n matrix A = (a;), where
ay = 1ifi = janday = 0ifi # j. On the other hand, afixed A may exhibit agreement to the
extent that WA, W24, etc. converges to comsensus even if W is not regular. Indeed, if A isa
consensus matrix then WA, W2A, etc. converges (to 4) for every W, by the remarks in the
next to last paragraph of Section 1 of this essay. Finally, it should be noted that there are
non-regular matrices, increasing powers of which converge to consensus matrices in which
one or morte columns consist entirely of zeroes. The initial opinions of individuals corres-
ponding to these columns are, with their consent, accorded no weight. One requires a
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broader notion than regularity if one wishes to capture this sort of consensus. See [2, Ch. 8]
for an account of convergence of this more general variety.

# Kemeny and Snell [6, Section 4.1].

H Ibid., Section 5.1,

13 Further justification for employing L to average A follows from the fact that when W is
ergodic, (W + W? + - - - + W")/n converges to L as n — = [6, Section 5.1]. Of course, if
W is regular the sequence W, W*, etc. also converges to L. ‘

1 1t should be noted that Lehrer has always been aware that the simplicity of employing
powers of a single weight matrix is gained at the expense of narrowing applicability of his
model. Indeed, it was Lehrer who asked me to look into convergence to consensus in a more
general setting.

'" See Note 11,
% We may have lim.(1 — d\}(1 —ds) - -+ (1 — di) = 0 even if limyxd; = O as, for
example, when d4;=1/i. More exactly, it may be shown that

Jimex{l —d)W1 — e} -« (1 — dy) =0 just when &, + dx + - - - converges to no fimte
limit. Thus, while d; may converge to zero, the convergence cannot occur too rapidly.

¥ See Wagner[15], pp. 344-5, for a fuller account.

2 Recall that one dotlar invested for a year at interest rate », compounded n times, has the
value (I + r/n)" at the end of that year. Perhaps contrary to one’s initial intuitions, this
quantity does not increase without bound as n increases, but, as shown in most calculus
texts, converges to &, where ¢ is the base of the system of natural logarithms. Hence e” may
be regarded as the value of one dollar invested for a year at interest rate r, compounded
continuously. As in Lehrer's model, a simple convergence theorem enables one to make
sense of an initially perplexing notion.

t For if we denote an opinion vector by (x,, X,. . . ., xn) and the averaging function by f,
lincarity implies that f(x,, Xz . . ., Xu)} = WX, + WeXs + - - + wyx, for some fixed
sequence wy, wa, . . ., W, of real numbers. For the vector (x,, X, . . ., Xp), where x; = 1
and.x, = 0ifj = i, the first axiom implies that 0 = flx,, xs, . . ., X») = w; = L Similarly, if
(xy. X4 . . .. Xa)issuch thatx; = 1 foreachi, then

fOre, 2z, - - L xp) =Wy we + 0wy = 1

% A very attractive characterization of this sort has recently (May 1979) come to light.
Weighted arithmetic means

f(x., e Xn) =W+ WX,

enjoy what might be called the allocation property: For each n X k matrix (a,) with all row
sums equal to some fixed s, one has

Fan. oo vt + f@e .o wamd+ -+ g o @) = 5.

This property is particularly desirable in the case of decision problems in which the values
of the decision variables are required to have a fixed sum, for without such a property, ad
hoc normalizations would be required after the application of the averaging function to the
columns of {a;). I conjectured, but was unable to prove, that the functions f: K" — R
satisfying the allocation property and the inequality min{x} = flx,, . . ., x,) = max{x;}
were precisely the weighted arithmetic means. Professor J. Acz€l has kindly furnished a
proof of this conjecture, which in fact assumes the allocation property only for k = 2 and
k=3
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