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A CHARACTERIZATION OF WEIGHTED ARITHMETIC MEANS*
1. ACZEL+ anD C. WAGNER?

Abstract. We prove, among other things, that the set of weighted arithmetic means is identical with the
set of functions f: R" > R satisfying

) min {G} = fleg o, 0 xS max )
and

i) for k=2,3: 55 x;=s(j=1,2, - TS T i i X ) = 5.

We call a function f: R" > R an averaging function if
(1) min {x;} = f{xq, x2, -+ x,) Smax {x;},

and a weighted arithmetic mean if FOr xa, o xa) = wix F waxa+- - -+ WwaXn, Where
O=w;=1 and wy+wy+ - -+w,=1, It is easy to check that among the familiar
averaging functions (weighted arithmetic, geometric, and harmonic means, weighted
medians) weighted arithmetic means uniquely enjoy, for all k = 1, what we shall call the
k-allocation property: ' _

Forall s € R, if (x;;) is a k x n matrix with Xyjtx+e o +xy=sfor1=7j=n, then
Flean, X1z, oo oy xan) +F(x21, %22, 0 Xza) F 00+ f(Rars Xaze <y Xan) = 5.

We prove in this note that the k-allocation property assumed only for £ =2 and
k =3, characterizes weighted arithmetic means in the set of all averaging functions. In
fact, we obtain the following more general result: .

THEOREM. The function f:R" > R safisfies the k-allocation property for k =2 and
k =3 and is continuous at a point or bounded from one side on an (n-dimensional)
interval or just on a set of positive measure if and only if there exist real numbers
Wi, Wa, Wy With witwat ot w, =1 such  that flx, x0, 00, x,) =
Wixi+waxa+- o+ wox,.

Proof. To postulate the k-allocation property for k = 2, 3 is equivalent to assuming
that, for all s e R, '

(2) flx1, xa,+ - s X)) H S —X1,5—x2, 0 5~ xn) =35
and )
G) flan xa, s xa )+ v ya, o ya) HFs —x1—y1, S=X2=Yn 8 ke —Ya) =45

Setting s = x, in (2), and writing

(4) . _f(O;MZ""sun)=g(u23'":un)’
we have
(5) f(xl’xb"'xn)=x1+g(xl_x2""nxl—xn)-

Setting s =x,+y, in (3), and writing =x1—x; and v;=y,—y; (2=j=n), it
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follows from (4) and (5) that

gluz, )+ (01, 0a)—gluztva, -+t +03) =0,
ie., | '
(6) gluatva, o Un +0R)=gUg, o U} 802, 0, Up)

By [2] and [1, pp. 215-16 and p. 32], the general solution of (6), continuous at a
point or bounded from one side on an interval or on a set of positive measure, is

(7) gz, "+, Up) = @2l +" * * + Aplp.

Hence the general solution of (2) and (3), under these same weak regularity conditions,
is, by (5),

@®) G, X2, xa)=(L+ay+- - +an)x— a6 — - - —aux,

= WX+ Waxs+ o+ WXy,
with w1+ wy+- - - +w, = 1, as asserted. Note that, in (8), one or more of the numbers w;
may be negative.

Now if f is assumed to be an averaging function, the aforementioned boundedness
conditions are clearly satisfied, and setting x; = 1 and x, =0 for k # j yields 0 s w; = 1.
Thus we have as a corollary to the above theorem the following characterization of
weighted arithmetic means:

CoOROLLARY. Let f: R" > R. Then f is a weighted arithmetic mean if and only if f is
an averaging function satisfying the k-allocation property fork =2 and k = 3.

Remark 1. In the statement of the above corollary the averaging function condition
(1) may be replaced by a considerably weaker supposition. It is clearly sufficient, for
example, that there exist some ¢>0 (no matter how small) such that 0=x,=c
(f=1,2,---,n)implies 05 f(xy, x5, -+, Xn).

Remark 2. The foregoing theorems arose in connection with a study of arithmetic
averaging as a method of amalgamating a set of individual opinions as to the most
appropriate values of some sequence of decision variables. (See [3].)

Suppose that there are k decision variables and » individuals and we denote by x;;
the opinion of individual j as to the most appropriate value of variable /. In many of
these problems (such as the allocation of a fixed sum of money among k competing
projects) the column sums of the matrix (x;;) are required to have a common value 5. If a
group adopts as the consensual value of variable i the weighted arithmetic average
Xi = wixn +waxip ++ - + wax;, the consensual values have the highly desirable property
X1+XE+. -+ % =s. The above results assert that weighted arithmetic means are the
only averaging functions with this property.
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