$\mathrm{relative}\mathrm{response}\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}}R(t)=1-J(t)/{J}_{\mathrm{drk}}\hspace{0.5em},$ | $(1)$ |
${R}_{n}^{*}+\mathrm{RK}\backslash underset{k}_{\mathrm{RK}1}(n)\backslash overset{k}_{\mathrm{RK}2}\rightleftharpoons {R}_{n}^{*}\u2022{\mathrm{RK}}_{\mathrm{pre}}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}}n=0,...,7.\hspace{1em}\hspace{1em}{k}_{\mathrm{RK}1(n)}={k}_{\mathrm{RK}1(0)}\hspace{0.5em}{e}^{-\omega n}\hspace{0.5em},\hspace{1em}n=1,...,7.$ |
$R}_{n}^{*}\u2022{\mathrm{RK}}_{\mathrm{pre}}+\mathrm{ATP}\backslash overset{k}_{\mathrm{RK}3}(n)\to {R}_{n+1}^{*}\u2022{\mathrm{RK}}_{\mathrm{post}}+\mathrm{ADP},\hspace{0.5em}\hspace{0.5em}\hspace{0.5em}n=0,...,7,\hspace{1em}{k}_{\mathrm{RK}3(n)}=\{\begin{array}{cc}{k}_{\mathrm{RK}3(0)}\hfill & \hspace{0.5em}:\text{for}n7\hfill \\ 0\hfill & \hspace{0.5em}:\text{for}n=7\hfill \end{array$ |
${R}_{n+1}^{*}\u2022{\mathrm{RK}}_{\mathrm{post}}\to {R}_{n+1}^{*}+\mathrm{RK}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=0,...,6.$ |
${R}_{n}^{*}+\mathrm{Arr}\to {R}_{n}\u2022\mathrm{Arr}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=1,...,7,\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}{k}_{A(n)}=n\hspace{0.5em}{k}_{A(1)}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=2,...,7.$ |
${R}_{n}^{*}+G\xb7\mathrm{GDP}\to {R}_{n}^{*}\u2022G\xb7\mathrm{GDP}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=0,...,7,\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}{k}_{G1(n)}={k}_{G1(0)}{e}^{-\omega n}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=1,...,7.$ |
${R}_{n}^{*}\u2022G\xb7\mathrm{GDP}\to {R}_{n}^{*}\u2022G+\mathrm{GDP}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=0,...,7.$ |
${R}_{n}^{*}\u2022G+\mathrm{GTP}\to {R}_{n}^{*}\xb7G\xb7\mathrm{GTP}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=0,...,7.$ |
${R}_{n}^{*}\u2022G\xb7\mathrm{GTP}\to {R}_{n}^{*}+G\xb7\mathrm{GTP}\hspace{0.5em},\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}n=0,...,7.$ |
$G\xb7\mathrm{GTP}\to {G}_{\alpha}\xb7\mathrm{GTP}+{G}_{\beta \gamma}\hspace{0.5em}.$ |
$\mathrm{PDE}+{G}_{\alpha}\xb7\mathrm{GTP}\to \mathrm{PDE}\u2022{G}_{\alpha}\xb7\mathrm{GTP}+{G}_{\beta \gamma}\hspace{0.5em},$ |
$\mathrm{PDE}\u2022{G}_{\alpha}\xb7\mathrm{GTP}\to {\mathrm{PDE}}^{*}\u2022{G}_{\alpha}\xb7\mathrm{GTP}\hspace{0.5em},$ |
${\mathrm{PDE}}^{*}\u2022{G}_{\alpha}\xb7\mathrm{GTP}\to \mathrm{PDE}\u2022{G}_{\alpha}\xb7\mathrm{GTP}+{\mathrm{PO}}_{4}\hspace{0.5em}.$ |
$\mathrm{minimize}\mathrm{\hspace{1em}\hspace{1em}\hspace{1em}}F(p)={w}_{1}{[1-{\mathrm{PDE}}_{\mathrm{pk}}^{*}(p)/\mathrm{TGTpk}]}^{2}+{w}_{2}{[1-{\mathrm{PDE}}_{\mathrm{pktime}}^{*}(p)/\mathrm{TGTpktime}]}^{2}$ | $(2)$ |
Fig.1a |
Fig.1b |
$F(p)=\sum _{k=1}^{32}{[1-R({t}_{k})/{R}_{\mathrm{tgt}}({t}_{k})]}^{2}+{w}_{1}{[1-{R}_{\mathrm{peak}}/\mathrm{TGTpk}]}^{2}+{w}_{2}{[1-{R}_{\mathrm{pktime}}/\mathrm{TGTpktime}]}^{2}$ | $(3)$ |