Asymptotics near extinction for nonlinear fast diffusion on a bounded domain

B Choi (PostTech), R McCann, and C Seis (Münster)
University of Toronto
www.math.toronto.edu/mccann 'Talk3'

5 May 2022

Outline

(1) Introduction to Nonlinear Diffusion
(2) History and goals
(3) Methods and results

- The dynamical systems approach
- Challenges

4 Acknowledgements

Nonlinear diffusion: basic question

Rate (and corrections) at which the nonlinear diffusion equation

$$
\begin{aligned}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right) & & \text { in } \Omega \subset \subset \mathbf{R}^{n} \text { open and bounded } \\
\rho & =0 & & \text { on }(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{aligned}
$$

transports heat from Ω to the sink at its boundary $\partial \Omega$?
Three regimes:

Nonlinear diffusion: basic question

Rate (and corrections) at which the nonlinear diffusion equation

$$
\begin{aligned}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right) & & \text { in } \Omega \subset \subset \mathbf{R}^{n} \text { open and bounded } \\
\rho & =0 & & \text { on }(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{aligned}
$$

transports heat from Ω to the sink at its boundary $\partial \Omega$?
Three regimes:
(PM) Porous medium: $m \in] 1, \infty[$
(FD) Sobolev subcritical fast diffusion: $0<m \in] \frac{n-2}{n+2}, 1[$
(FD') Sobolev supercritical fast diffusion: $m \in]-\infty, \frac{n-2}{n+2}[$
Limiting cases: linear heat equation $m=1$
Sobolev critical diffusion $m=\frac{n-2}{n+2}$

How does this work for the linear heat equation

Recall: separation of variables yields

$$
\rho(\tau, y)=\sum_{i=1}^{\infty} c_{i} e^{-\lambda_{i} \tau} \phi_{i}(y)
$$

where

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots
$$

and $c_{i}=\left\langle\rho_{0}, \phi_{i}\right\rangle_{L^{2}}$ where $\left\{\phi_{i}\right\}_{i=1}^{\infty} \subset H_{0}^{1}(\Omega)$ for

$$
H_{0}^{1}(\Omega)=
$$

How does this work for the linear heat equation

Recall: separation of variables yields

$$
\rho(\tau, y)=\sum_{i=1}^{\infty} c_{i} e^{-\lambda_{i} \tau} \phi_{i}(y)
$$

where

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots,
$$

and $c_{i}=\left\langle\rho_{0}, \phi_{i}\right\rangle_{L^{2}}$ where $\left\{\phi_{i}\right\}_{i=1}^{\infty} \subset H_{0}^{1}(\Omega)$ for

$$
H_{0}^{1}(\Omega)=\left\{\phi \in L^{2}(\Omega) \mid D \phi \in L^{2}(\Omega) \text { and } \phi=0 \text { on } \partial \Omega\right\}
$$

solve

$$
-\Delta \phi_{i}=\lambda_{i} \phi_{i} \quad \text { on } \Omega
$$

and form an orthonormal basis for $L^{2}(\Omega)$

Do the nonlinear dynamics admit a similar description?

$$
\left\{\begin{array}{l}
\rho(0, y)=\rho_{0}(y) \\
\frac{\partial \rho}{\partial \tau}=\frac{1}{m} \Delta\left(\rho^{m}\right)
\end{array}\right.
$$

Do the nonlinear dynamics admit a similar description?

$$
\left\{\begin{array}{l}
\rho(0, y)=\rho_{0}(y) \\
\frac{\partial \rho}{\partial \tau}=\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right)
\end{array}\right.
$$

Do the nonlinear dynamics admit a similar description?

$$
\left\{\begin{array}{l}
\rho(0, y)=\rho_{0}(y) \\
\frac{\partial \rho}{\partial \tau}=\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right)=\nabla \cdot\left(\rho \nabla\left(\frac{\rho^{m-1}}{m-1}\right)\right)
\end{array}\right.
$$

Do the nonlinear dynamics admit a similar description?

$$
\left\{\begin{array}{l}
\rho(0, y)=\rho_{0}(y) \\
\frac{\partial \rho}{\partial \tau}=\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right)=\nabla \cdot\left(\rho \nabla\left(\frac{\rho^{m-1}}{m-1}\right)\right)
\end{array}\right.
$$

POROUS MEDIUM REGIME ($m>1$)

- fluid in rock; population spreading; temperature dependent conductivity
- rate of diffusion ρ^{m-1} varies directly with density ρ of diffusing material
- compactly supported ρ_{0} remains compactly supported at $\tau>0$

Motivation: dissipative fluids

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+u \cdot \nabla\right)(\rho u)=-\nabla P(\rho)-b u \tag{1}
\end{equation*}
$$

- if drag negligible ($b \ll 1$), (1) couples with continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho u)=0 \tag{2}
\end{equation*}
$$

to give compressible Euler system

Motivation: dissipative fluids

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+u \cdot \nabla\right)(\rho u)=-\nabla P(\rho)-b u \tag{1}
\end{equation*}
$$

- if drag negligible ($b \ll 1$), (1) couples with continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho u)=0 \tag{2}
\end{equation*}
$$

to give compressible Euler system

- if drag dominates ($b \gg 1$), neglect inertial terms in (1); then (2) yields

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}-\frac{1}{b} \nabla \cdot(\rho \nabla P(\rho))=0 \tag{3}
\end{equation*}
$$

Motivation: dissipative fluids

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+u \cdot \nabla\right)(\rho u)=-\nabla P(\rho)-b u \tag{1}
\end{equation*}
$$

- if drag negligible ($b \ll 1$), (1) couples with continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho u)=0 \tag{2}
\end{equation*}
$$

to give compressible Euler system

- if drag dominates ($b \gg 1$), neglect inertial terms in (1); then (2) yields

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}-\frac{1}{b} \nabla \cdot(\rho \nabla P(\rho))=0 \tag{3}
\end{equation*}
$$

- polytropic equation of state $P(\rho)=\frac{b}{m-1} \rho^{m}$ gives nonlinear diffusion (3)

Subcritical fast diffusion regime (

$$
\begin{array}{rlrl}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right) & \text { in } \Omega \subset \subset \mathbf{R}^{n} \\
\rho & =0 & \text { on }(\tau, y) \in(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{array}
$$

- rate of diffusion varies inversely with density of diffusing material
- $m=1 / 2$ used to model plasma ions diffusing across a \vec{B} field

Subcritical fast diffusion regime (

$$
\begin{array}{rlrl}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right) & \text { in } \Omega \subset \subset \mathbf{R}^{n} \\
\rho & =0 & \text { on }(\tau, y) \in(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{array}
$$

- rate of diffusion varies inversely with density of diffusing material
- $m=1 / 2$ used to model plasma ions diffusing across a \vec{B} field
- solution vanishes at (finite) time $T=T\left(\rho_{0}\right)<\infty$

Subcritical fast diffusion regime (

$$
\begin{array}{rlrl}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right) & \text { in } \Omega \subset \subset \mathbf{R}^{n} \\
\rho & =0 & \text { on }(\tau, y) \in(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{array}
$$

- rate of diffusion varies inversely with density of diffusing material
- $m=1 / 2$ used to model plasma ions diffusing across a \vec{B} field
- solution vanishes at (finite) time $T=T\left(\rho_{0}\right)<\infty$
- rate at which this convergence happens?

Subcritical fast diffusion regime (

$$
\begin{array}{rlrl}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right) & \text { in } \Omega \subset \subset \mathbf{R}^{n} \\
\rho & =0 & \text { on }(\tau, y) \in(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{array}
$$

- rate of diffusion varies inversely with density of diffusing material
- $m=1 / 2$ used to model plasma ions diffusing across a \vec{B} field
- solution vanishes at (finite) time $T=T\left(\rho_{0}\right)<\infty$
- rate at which this convergence happens? higher asymptotics?

Subcritical fast diffusion regime (

$$
\begin{array}{rlrl}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right) & \text { in } \Omega \subset \subset \mathbf{R}^{n} \\
\rho & =0 & \text { on }(\tau, y) \in(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{array}
$$

- rate of diffusion varies inversely with density of diffusing material
- $m=1 / 2$ used to model plasma ions diffusing across a \vec{B} field
- solution vanishes at (finite) time $T=T\left(\rho_{0}\right)<\infty$
- rate at which this convergence happens? higher asymptotics?
- Rescale (Berryman-Holland '78-'80): if $p=1 / m$ then

$$
v(t, x)^{p}=\frac{\rho(\tau, x)}{\frac{1-m}{m}(T-\tau)^{\frac{1}{1-m}}} \quad \text { and } \quad t=-\frac{1-m}{m} \log \left|1-\frac{\tau}{T}\right|
$$

satisfy

$$
\frac{\partial}{\partial t}\left(\frac{v^{p}}{p}\right)=\Delta v+v^{p}
$$

Subcritical fast diffusion regime (

$$
\begin{array}{rlrl}
\frac{\partial \rho}{\partial \tau} & =\frac{1}{m} \Delta\left(\rho^{m}\right)=\nabla \cdot\left(\rho^{m-1} \nabla \rho\right) & \text { in } \Omega \subset \subset \mathbf{R}^{n} \\
\rho & =0 & \text { on }(\tau, y) \in(0, \infty) \times \partial \Omega \in C^{\infty} \\
0 \leq \rho & =\rho_{0} \in L^{1}(\Omega) & & \text { on }\{\tau=0\} \times \Omega
\end{array}
$$

- rate of diffusion varies inversely with density of diffusing material
- $m=1 / 2$ used to model plasma ions diffusing across a \vec{B} field
- solution vanishes at (finite) time $T=T\left(\rho_{0}\right)<\infty$
- rate at which this convergence happens? higher asymptotics?
- Rescale (Berryman-Holland '78-'80): if $p=1 / m$ then

$$
v(t, x)^{p}=\frac{\rho(\tau, x)}{\frac{1-m}{m}(T-\tau)^{\frac{1}{1-m}}} \quad \text { and } \quad t=-\frac{1-m}{m} \log \left|1-\frac{\tau}{T}\right|
$$

satisfy

$$
\frac{\partial}{\partial t}\left(\frac{v^{p}}{p}\right)=\Delta v+v^{p}=\frac{\delta E}{\delta v} \quad \text { in }(t, x) \in(0, \infty) \times \Omega
$$

where

$$
E(v):=\int_{\Omega}\left[\frac{1}{2}|\nabla v|^{2}-\frac{1}{p+1} v^{p+1}\right] d x
$$

is a Lyapunov function for the rescaled dynamics.

- Berger '77: $\frac{\delta E}{\delta v}=0$ has positive solutions in $H_{0}^{1}(\Omega)$ 'ground states'
- Berryman-Holland '80: $v(t) \rightarrow$ ground state as $t \rightarrow \infty$ along a subsequence; conjectured limit unique \& higher-order asymptotics
- Brezis-Nirenberg '83: ground states non-unique on certain domains
where

$$
E(v):=\int_{\Omega}\left[\frac{1}{2}|\nabla v|^{2}-\frac{1}{p+1} v^{p+1}\right] d x
$$

is a Lyapunov function for the rescaled dynamics.

- Berger '77: $\frac{\delta E}{\delta v}=0$ has positive solutions in $H_{0}^{1}(\Omega)$ 'ground states'
- Berryman-Holland '80: $v(t) \rightarrow$ ground state as $t \rightarrow \infty$ along a subsequence; conjectured limit unique \& higher-order asymptotics
- Brezis-Nirenberg '83: ground states non-unique on certain domains
- Feireisl-Simondon '00: $\lim _{t \rightarrow \infty} v(t)=V$, but depends on $v(0)$
- Bonforte-Grillo-Vazquez '12: $\left\|\frac{v(t)}{V}-1\right\|_{\infty} \rightarrow 0$ (rate if $m \sim 1$)
- Jin-Xiong '20+: $\left\|\frac{v(t)}{V}-1\right\|_{\infty} \leq \frac{C}{t^{\sigma}}$ for some $C, \sigma>0$ if $m \in\left[\frac{n-2}{n+2}, 1[\right.$
- Bonforte-Figalli '21: $\left\|\frac{v(t)}{v}-1\right\|_{\infty} \leq C e^{-\lambda t}$, where the spectral gap $\lambda>0$ for an open $C^{2, \alpha}$ dense set of domains Ω, including the ball
- Akagi '21+ energetic (rather than entropic) proof

Linearization

relative error

$$
h(t):=\frac{v(t)}{V}-1
$$

satisfies

$$
\frac{\partial h}{\partial t}+L_{v} h=N(h)=M_{v}(h)
$$

where

$$
\begin{aligned}
L_{V} h & =-\frac{1}{V} \Delta(h V)-p h \\
& =-V^{-p-1} \nabla \cdot\left(V^{2} \nabla h\right)-(p-1) h \\
& \geq(1-p) h \\
N(h) & =(1+h)^{p}-1-p h-\left((1+h)^{p}-1\right) p \frac{\partial h}{\partial t} \\
M_{V}(h) & =\frac{1}{(1+h)^{p-1}}\left[(1+h)^{p}-1-p h+\left((1+h)^{p}-1\right) L_{V} h\right]
\end{aligned}
$$

Diagonalization (Bonforte-Figalli '21)

$$
\begin{aligned}
\|f\|_{L_{r}^{q}} & :=\left(\int_{\Omega}|f(x)|^{q} V(x)^{r} d x\right)^{1 / q} \\
\langle f, g\rangle_{r} & :=\langle f, g\rangle_{L_{r}^{2}}=\int_{\Omega} f g V(x)^{r} d x
\end{aligned}
$$

implies L_{V} is self-adjoint on L_{p+1}^{2} and has a complete basis of eigenvectors, which are critical points for the restriction of the weighted Dirichlet energy

Diagonalization (Bonforte-Figalli '21)

$$
\begin{aligned}
\|f\|_{L_{r}^{q}} & :=\left(\int_{\Omega}|f(x)|^{q} V(x)^{r} d x\right)^{1 / q} \\
\langle f, g\rangle_{r} & :=\langle f, g\rangle_{L_{r}^{2}}=\int_{\Omega} f g V(x)^{r} d x
\end{aligned}
$$

implies L_{V} is self-adjoint on L_{p+1}^{2} and has a complete basis of eigenvectors, which are critical points for the restriction of the weighted Dirichlet energy

$$
Q_{V}(\phi):=\|D \phi\|_{L_{2}^{2}}^{2}=\int_{\Omega}|D \phi|^{2} V^{2} d x
$$

to the L_{p+1}^{2} unit-sphere, with the boundary trace of ϕV vanishing.
Proof: $\tilde{L}:=V \circ\left(L_{V}+p I\right) \circ V^{-1} \geq I$ has compact inverse on $L_{p-1}^{2} \cdots$

Denote the eigenvalues by

$$
\lambda_{-I}<\lambda_{-I+1} \leq \cdots \leq \lambda_{-3} \leq \lambda_{-2} \leq \cdots \leq \lambda_{K-1} \leq 0<\lambda_{K} \leq \lambda_{K+1} \leq \cdots
$$

where $I \geq 1$ counts the number of unstable modes, $K \geq 0$ the zero modes (if any), and $\lambda_{K}>0$ is the first positive eigenvalue or 'spectral gap'

Note $L_{V}+(p-1) \geq 0$ and $L_{V} 1=(1-p) 1$ imply $\lambda_{-I}=1-p$ and simple; this corresponds to time translation symmetry in the original variables.

Bonforte-Figalli '21's exponential convergence rate $\lambda=\lambda_{K}$ follows from the fact that the unstable modes are suppressed (Feireisl-Simondon '00), while $C^{2, \alpha}$-generic domains admit no zero modes (Saut-Teman '79).

Can we (a) close the gap between Bonforte-Figalli '21's exponential and Jin-Xiong '20's algebraic rate of convergence, and/or
(b) access higher asymptotics conjectured (for $n=1$) by

Berryman-Holland '80?
(c) When do zero modes spoil exponential convergence?

First dichotomy

Theorem (Choi-M.-Seis)

Fix $\Omega \subset \subset \mathbf{R}^{n}$ bounded with $\partial \Omega \in C^{\infty}$ and $\left.0<m \in\right] \frac{n-2}{n+2}, 1[$. If $0 \leq v \in L^{\infty}\left(\left[0, \infty[\times \Omega)\right.\right.$ solves dynamics and $h(t):=\frac{v(t)}{v}-1 \rightarrow 0$ uniformly, there exist $\epsilon, C(p, V)$ and $\lambda \geq \lambda_{K}$ such that $\|h\|_{L^{\infty}\left(\mathbf{R}_{+} \times \Omega\right)} \leq \epsilon$ implies either

$$
\begin{array}{ll}
C\|h(t)\|_{L^{\infty}} \geq\|h(t)\|_{L_{p+1}^{2}} \geq \frac{1}{C t} & \forall t \gg 1 \\
\text { or } \quad \frac{1}{C}\|h(t)\|_{L_{p+1}^{2}} \leq\|h(t)\|_{L^{\infty}} \leq C e^{-\lambda t}\|h(0)\|_{L_{p+1}^{2}} & \forall t \geq 1 \tag{5}
\end{array}
$$

First dichotomy

Theorem (Choi-M.-Seis)

Fix $\Omega \subset \subset \mathbf{R}^{n}$ bounded with $\partial \Omega \in C^{\infty}$ and $\left.0<m \in\right] \frac{n-2}{n+2}, 1[$. If $0 \leq v \in L^{\infty}\left(\left[0, \infty[\times \Omega)\right.\right.$ solves dynamics and $h(t):=\frac{v(t)}{v}-1 \rightarrow 0$ uniformly, there exist $\epsilon, C(p, V)$ and $\lambda \geq \lambda_{K}$ such that $\|h\|_{L^{\infty}\left(\mathbf{R}_{+} \times \Omega\right)} \leq \epsilon$ implies either

$$
\begin{array}{ll}
C\|h(t)\|_{L^{\infty}} \geq\|h(t)\|_{L_{p+1}^{2}} \geq \frac{1}{C t} & \forall t \gg 1 \\
\text { or } \quad \frac{1}{C}\|h(t)\|_{L_{p+1}^{2}} \leq\|h(t)\|_{L^{\infty}} \leq C e^{-\lambda t}\|h(0)\|_{L_{p+1}^{2}} & \forall t \geq 1 \tag{5}
\end{array}
$$

If (5) holds and $\left.2 \lambda \in] \lambda_{J}, \lambda_{J+1}\right]$, then there exist $c_{i}=c_{i}(h(0)) \in \mathbf{R}$ and $\tilde{C}=\tilde{C}(V, p, \lambda, C)$ such that the eigenfunctions $L_{V} \phi_{i}=\lambda_{i} \phi_{i} \in L_{p+1}^{2}(\Omega)$ yield

$$
\left\|h(t)-\sum_{i=K}^{J} c_{i} e^{-\lambda_{i} t} \phi_{i}\right\|_{L_{p+1}^{2}} \leq \tilde{C}\|h(0)\|_{L_{p+1}^{2}} t e^{-2 \lambda t}
$$

Let $S \subset H_{0}^{1}(\Omega)$ denote the set of fixed points $V \geq 0$ of the rescaled dynamics. Then $S \subset C^{3, \alpha}(\Omega)$ and $V, W \in S$ implies $V / W \in L^{\infty}$. Topologize S using the relatively uniform 'balls'

$$
B_{r}(V):=\left\{W \in S \left\lvert\,\left\|\frac{W}{V}-1\right\|_{\infty}<r\right.\right\}
$$

as a base. Call $V \in S$ an ordinary limit iff S forms a manifold of dimension $\operatorname{dim}(S)=K:=\operatorname{dim}\left(\operatorname{Ker} L_{V}\right)$ near V, which the error relative to V embeds differentiably into $L_{p+1}^{2}(\Omega)$.

Theorem (Second dichotomy)

Under the hypotheses of the preceding theorem, convergence is exponentially fast if V is an ordinary limit.

Remark: All tangent vectors to the embedding of S at V lie in $K e r L_{V}$. Conversely, if V is an ordinary limit, then each $u \in K e r L_{V}$ is tangent to the embedding of S. In the latter case the kernel is said to be integrable, a notion exploited by Allard-Almgren '81 and Simon '85 for related purposes in the context of minimal surfaces and geometric evolution equations.

We expect ordinary limits to be in some sense generic in S.

Some history for with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 m> $m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$

Some history for
 with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin ' $80 m>m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$

Some history for
 with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 m> $m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$

Some history for \quad with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 m> $m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-McCann ('03, ' $05, m \in] m_{2}, 1[$) spectrum of linearized problem

Some history for \quad with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 m> $m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-McCann ('03, ' $05, m \in] m_{2}, 1[$) spectrum of linearized problem Vazquez ('03, $m \in] m_{0}, 1[)\left\|\frac{\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)}{\rho(\tau, \cdot)}\right\|_{L^{\infty}}=o(1) \quad$ as $\quad \tau \rightarrow \infty$

Some history for \quad with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 m> $m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-McCann ('03, '05, $m \in] m_{2}, 1[$) spectrum of linearized problem Vazquez ('03, $m \in] m_{0}, 1[)\left\|\frac{\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)}{\rho(\tau, \cdot)}\right\|_{L^{\infty}}=o(1) \quad$ as $\quad \tau \rightarrow \infty$ Kim-McCann ('05, m \in] $\left.\left.m_{0}, m_{2}\right],\langle x\rangle_{\rho-\tilde{\rho}}=0\right) \quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$

Some history for \quad with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 $m>m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-McCann ('03, '05, $m \in] m_{2}, 1[$) spectrum of linearized problem Vazquez ('03, $m \in] m_{0}, 1[)\left\|\frac{\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)}{\rho(\tau, \cdot)}\right\|_{L^{\infty}}=o(1) \quad$ as $\quad \tau \rightarrow \infty$ Kim-McCann ('05, m \in] $\left.\left.m_{0}, m_{2}\right],\langle x\rangle_{\rho-\tilde{\rho}}=0\right) \quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-Koch-McCann ('15, m $\in] m_{0}, 1[) \quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ for some translate of $\tilde{\rho}_{0}$, and higher-order asymptotics

Some history for \quad with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 $m>m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-McCann ('03, '05, $m \in] m_{2}, 1[$) spectrum of linearized problem Vazquez ('03, $m \in] m_{0}, 1[)\left\|\frac{\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)}{\rho(\tau, \cdot)}\right\|_{L^{\infty}}=o(1) \quad$ as $\quad \tau \rightarrow \infty$ Kim-McCann ('05, m \in] $\left.\left.m_{0}, m_{2}\right],\langle x\rangle_{\rho-\tilde{\rho}}=0\right) \quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-Koch-McCann ('15, $m \in] m_{0}, 1\left[\right.$) $\quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ for some translate of $\tilde{\rho}_{0}$, and higher-order asymptotics
c.f. Blanchet, Bonforte, Dolbeault, Grillo, Vazquez '07- and Toscani '11

Some history for \quad with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 m> $m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-McCann ('03, '05, $m \in] m_{2}, 1[$) spectrum of linearized problem Vazquez ('03, $m \in] m_{0}, 1[)\left\|\frac{\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)}{\rho(\tau, \cdot)}\right\|_{L^{\infty}}=o(1) \quad$ as $\quad \tau \rightarrow \infty$ Kim-McCann ('05, m \in] $\left.\left.m_{0}, m_{2}\right],\langle x\rangle_{\rho-\tilde{\rho}}=0\right) \quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-Koch-McCann ('15, $m \in] m_{0}, 1\left[\right.$) $\quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ for some translate of $\tilde{\rho}_{0}$, and higher-order asymptotics
c.f. Blanchet, Bonforte, Dolbeault, Grillo, Vazquez '07- and Toscani '11 Seis '14 $(m>1)$ linearized spectrum for the porous medium equation

Some history for \quad with $m=1-\frac{2}{n+}$

For compactly supported non-negative initial data with $\left\|\rho_{0}\right\|_{1}=\left\|\tilde{\rho}_{0}\right\|_{1}$ Friedman-Kamin '80 $m>m_{0} \Rightarrow\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=o(1)$ as $\tau \rightarrow \infty$ Carrillo-Toscani '99, Dolbeault-del Pino '00, Otto '01 $m=m_{q}>m_{n}$ implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-\frac{1}{2}\left(1+\frac{n}{q}\right)}\right)$ as $\tau \rightarrow \infty$ Carrillo-Vazquez ('03, $m>m_{0}=1-\frac{2}{n}$) radial symmetry implies $\|\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)\|_{L^{1}}=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-McCann ('03, '05, $m \in] m_{2}, 1[$) spectrum of linearized problem Vazquez ('03, $m \in] m_{0}, 1[)\left\|\frac{\rho(\tau, \cdot)-\tilde{\rho}(\tau, \cdot)}{\rho(\tau, \cdot)}\right\|_{L^{\infty}}=o(1) \quad$ as $\quad \tau \rightarrow \infty$ Kim-McCann ('05, $\left.\left.m \in] m_{0}, m_{2}\right],\langle x\rangle_{\rho-\tilde{\rho}}=0\right) \quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ Denzler-Koch-McCann ('15, $m \in] m_{0}, 1\left[\right.$) $\quad=O\left(\tau^{-1}\right)$ as $\tau \rightarrow \infty$ for some translate of $\tilde{\rho}_{0}$, and higher-order asymptotics
c.f. Blanchet, Bonforte, Dolbeault, Grillo, Vazquez '07- and Toscani '11 Seis '14 $(m>1)$ linearized spectrum for the porous medium equation Angenent '88 invariant manifolds $m \geq 1=n$; Koch '99, Seis ' $15+n \geq 1$

A (finite dimensional) dynamical systems approach

$$
x^{\prime}(t)=-F(x(t)) \in \mathbf{R}^{n} \quad \text { with } \quad x(0)=x_{0}
$$

LINEARIZE around fixed point $F\left(x_{\infty}\right)=0$ to get:

$$
\left(x(t)-x_{\infty}\right)^{\prime}=-D F\left(x_{\infty}\right)\left(x(t)-x_{\infty}\right)^{\prime}+O\left(x(t)-x_{\infty}\right)^{2}
$$

A (finite dimensional) dynamical systems approach

$$
x^{\prime}(t)=-F(x(t)) \in \mathbf{R}^{n} \quad \text { with } \quad x(0)=x_{0}
$$

LINEARIZE around fixed point $F\left(x_{\infty}\right)=0$ to get:

$$
\left(x(t)-x_{\infty}\right)^{\prime}=-D F\left(x_{\infty}\right)\left(x(t)-x_{\infty}\right)^{\prime}+O\left(x(t)-x_{\infty}\right)^{2}
$$

If $\sigma\left(D F\left(x_{\infty}\right)\right)=\left\{0<\lambda_{1} \leq \cdots \leq \lambda_{n}\right\}$ with eigenvectors $\hat{\phi}_{i}$, as $t \rightarrow \infty$ expect

$$
x(t)-x_{\infty}=\sum_{i=1}^{n} c_{i} \hat{\phi}_{i} e^{-\lambda_{i} t}
$$

A (finite dimensional) dynamical systems approach

$$
x^{\prime}(t)=-F(x(t)) \in \mathbf{R}^{n} \quad \text { with } \quad x(0)=x_{0}
$$

LINEARIZE around fixed point $F\left(x_{\infty}\right)=0$ to get:

$$
\left(x(t)-x_{\infty}\right)^{\prime}=-D F\left(x_{\infty}\right)\left(x(t)-x_{\infty}\right)^{\prime}+O\left(x(t)-x_{\infty}\right)^{2}
$$

If $\sigma\left(D F\left(x_{\infty}\right)\right)=\left\{0<\lambda_{1} \leq \cdots \leq \lambda_{n}\right\}$ with eigenvectors $\hat{\phi}_{i}$, as $t \rightarrow \infty$ expect

$$
x(t)-x_{\infty}=\sum_{i=1}^{n} c_{i} \hat{\phi}_{i} e^{-\lambda_{i} t}+\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} \hat{\phi}_{i} \hat{\phi}_{j} e^{-\left(\lambda_{i}+\lambda_{j}\right) t}+\sum_{i} \sum_{j} \sum_{k} \cdots
$$

- to simplify, only strive for asymptotics to order $O\left(e^{-2 \lambda_{1} t}\right)$
- differentiability of $F\left(x_{0}\right)$ or $x(t)=X\left(t, x_{0}\right)$ wrt $x_{0} \in \mathbf{R}^{n}$ was crucial

New challenges

- coping with unstable and zero modes

New challenges

- coping with unstable and zero modes
- estimating the nonlinearity quadratically $\|N(v(t))\|_{L_{p+1}^{2}} \leq\|v(t-1)\|_{L_{p+1}^{2}}^{2}$ using $\left.|N(v(t))| \leq|v(t)| \| \frac{\partial}{\partial t} v(t)\right) \|_{L \infty}$ to reduce to one of the model cases

$$
\dot{a}(t)=-C a^{2} \quad \text { so that } \quad a(t)=\frac{1}{C t+a(0)^{-1}}
$$

or

New challenges

- coping with unstable and zero modes
- estimating the nonlinearity quadratically $\|N(v(t))\|_{L_{p+1}^{2}} \leq\|v(t-1)\|_{L_{p+1}^{2}}^{2}$ using $\left.|N(v(t))| \leq|v(t)| \| \frac{\partial}{\partial t} v(t)\right) \|_{L^{\infty}}$ to reduce to one of the model cases

$$
\dot{a}(t)=-C a^{2} \quad \text { so that } \quad a(t)=\frac{1}{C t+a(0)^{-1}}
$$

or

$$
\dot{x}_{i}=-\lambda_{i} x_{i}+N_{i}(x), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}
$$

where $N(x) \leq k|x|^{2}$ if $|x| \leq \epsilon^{2}$, and $\lambda_{i} \geq \lambda>0$. In this case Gronwall implies $f(t)=|x(t)|^{2}$ satisfies

$$
f(T) \leq f(0) \exp [-2(\lambda-k \epsilon) T]
$$

and then, if $f(t) \leq C^{2} \exp [-2 \wedge t]$ for some $\Lambda>0, C$ and all $t \geq 0$,

$$
|x(T)| \leq|x(0)| \exp \left[-\lambda T+\frac{C}{2 \Lambda}\right]
$$

Merle-Zaag '98 (Filippas-Kohn) dominant balance variant

Lemma (K. Choi-Haslhofer-Hershkovits '18+)

Let $X(s), Y(s)$, and $Z(s)$ be non-negative $A C$ functions on $[0, \infty)$ satisfying

$$
\begin{aligned}
\frac{d X}{d s}-X & \geq-\epsilon(Y+Z) \\
\left|\frac{d Y}{d s}\right| & \leq \epsilon(X+Y+Z), \text { and } \\
\frac{d Z}{d s}+Z & \leq \epsilon(X+Y)
\end{aligned}
$$

for each $\epsilon \in\left(0, \frac{1}{100}\right)$ and a.e. $s \in\left[s_{0}(\epsilon), \infty\right)$.

Merle-Zaag '98 (Filippas-Kohn) dominant balance variant

Lemma (K. Choi-Haslhofer-Hershkovits '18+)

Let $X(s), Y(s)$, and $Z(s)$ be non-negative $A C$ functions on $[0, \infty)$ satisfying

$$
\begin{aligned}
\frac{d X}{d s}-X & \geq-\epsilon(Y+Z) \\
\left|\frac{d Y}{d s}\right| & \leq \epsilon(X+Y+Z), \text { and } \\
\frac{d Z}{d s}+Z & \leq \epsilon(X+Y)
\end{aligned}
$$

for each $\epsilon \in\left(0, \frac{1}{100}\right)$ and a.e. $s \in\left[s_{0}(\epsilon), \infty\right)$. If $\lim _{s \rightarrow \infty}(X+Y+Z)(s)=0$ then $X \leq 2 \epsilon(Y+Z)$ for $s \geq s_{0}(\epsilon)$ and either

$$
\begin{equation*}
X(s)+Z(s)=o(Y(s)) \text { as } s \rightarrow \infty \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
X(s)+Y(s) \leq 100 \epsilon Z(s) \text { for } s \geq s_{0}(\epsilon) \tag{7}
\end{equation*}
$$

Quadratic Hilbert-space estimate for the nonlinearity:

First dichotomy: apply the lemma to $X(t), Y(t)$ and $Z(t)$ defined as the Hilbert norm $L_{p+1}^{2}:=L^{2}\left(V^{p+1}\right)$ of the orthogonal projection of $h(t)$ onto the unstable, neutral, and stable modes respectively. To absorb the nonlinearity into the ϵ corrections, apply the following theorem with $t=1$.

Quadratic Hilbert-space estimate for the nonlinearity:

First dichotomy: apply the lemma to $X(t), Y(t)$ and $Z(t)$ defined as the Hilbert norm $L_{p+1}^{2}:=L^{2}\left(V^{p+1}\right)$ of the orthogonal projection of $h(t)$ onto the unstable, neutral, and stable modes respectively. To absorb the nonlinearity into the ϵ corrections, apply the following theorem with $t=1$.

Theorem (Spatially uniform control of time derivatives)

Let $k \in\{0,1,2, \ldots\}$ and $t>0$ fixed. Then if $\|h\|_{L^{\infty}} \leq \epsilon$ with ϵ sufficiently small, there exists a constant $C=C(t, k, m, V)$ such that

$$
\left\|\partial_{t}^{k} h(t)\right\|_{L^{\infty}} \leq C\left\|h_{0}\right\|_{L_{p+1}^{2}} .
$$

Proof: degenerate parabolic smoothing, with delicate control near the boundary of Ω where $V(x) \sim d_{\partial \Omega}(x)$.
c.f. Jin-Xiong '19+

Among other ingredients, second dichotomy relies on

Lemma (K. Choi-Sun '20+)

Suppose $X(s), Y(s)$, and $Z(s)$ are non-negative absolutely continuous functions on some interval $[-L, L]$ such that $0<X+Y+Z<\eta$ for some $\eta>0$. Suppose that there exist two constants $\sigma>0$ and $\Lambda>0$ such that

$$
\begin{aligned}
\frac{d X}{d s}-\Lambda X & \geq-\sigma(Y+Z) \\
\left|\frac{d Y}{d s}\right| & \leq \sigma(X+Y+Z) \\
\frac{d Z}{d s}+\Lambda Z & \leq \sigma(X+Y)
\end{aligned}
$$

for any $s \in[-L, L]$. Then there exists $\sigma_{0}=\sigma_{0}(\Lambda)$ such that if $0<\sigma<\sigma_{0}$ it holds

$$
X+Z \leq \frac{8 \sigma}{\Lambda} Y+4 \eta e^{-\frac{\Lambda L}{4}} \text { for any } s \in[-L / 2, L / 2]
$$

Thank you!

