Einstein meets Hausdorff, Kantorovich, and Boltmzann

Robert J McCann
University of Toronto
www.math.toronto.edu/mccann/Talk2.pdf

UT Knoxville 28 April 2022

Two famous sign laws in physics

- gravity is always attractive, never repulsive
- entropy always goes up, never down

Might these be related?

Two famous sign laws in physics

- gravity is always attractive, never repulsive
- entropy always goes up, never down

Might these be related?

- Bekenstein '73: 2nd law of black hole dynamics area of horizons can only increase
- Jacobson '95: Einstein's equation follows from Entropy := Horizon Area
- E Verlinde '11: Gravity as an emergent entropic (i.e. statistical) force

Today I'll describe a connection between gravity and entropy using optimal transport (M. '20) (Mondino-Suhr '22)
which allows one to build a nonsmooth theory of gravity (Kunzinger-Sämann '18) (Cavalletti-Mondino '20+) (M.-Sämann '21+)

Gravity

Newton (1687)
Non-negativity of classical mass implies gravity acts purely attractively

$$
F=m_{\text {inertial }} a=-m_{\text {gravitational }} D V \quad \text { where } \quad \Delta V=4 \pi \rho \geq 0
$$

Of course, there were some observations Newton couldn't explain...

Gravity

Newton (1687)
Non-negativity of classical mass implies gravity acts purely attractively

$$
F=m_{\text {inertial }} a=-m_{\text {gravitational }} D V \quad \text { where } \quad \Delta V=4 \pi \rho \geq 0
$$

Of course, there were some observations Newton couldn't explain...

- the perihelion precession of Mercury, and
- $m_{\text {inertial }}=m_{\text {gravitational }}$

Caricature of Galileo's Falling Mass Experiment

General Relativity

(Einstein's theory of gravity)

"gravity not a force, merely a manifestation of curvature in the underlying geometry of spacetime"

Flat Earth Society

Einstein's Tensor Equation

"geometry = physics"
 $\mathrm{G}_{\mathrm{ab}}=8 \pi \mathrm{~T}_{\mathrm{ab}}$

average sectional π curvature in a given direction MINUS (a multiple of) the same quantity averaged over all directions

energy and momentum fluxes
of matter in system

$$
a, b=t, x, y, z
$$

Signature (i.e. dimensions) of space+time $=3+1$

Spaceship near a black hole

$$
\begin{aligned}
& \text { Loran zion } \\
& \text { Manifold } \\
& \text { fast cone } T_{x} M \\
& g \sim \operatorname{diag}(+1,-1,-1, \cdots,-1) \\
& n-1
\end{aligned}
$$

Terminology and conventions

$0 \neq v \in T_{x} M$ is
(a) timelike if $\quad g(v, v)>0$
(b) lightlike (or null) if $\quad "=0$
(c) spacelike if $"<0$
(d) causal if (a) or (b) hold, in which case
(e) future-directed if it lies in the green cone
(f) past-directed if it lies in the red cone

A C^{1} curve $\sigma:(a, b) \rightarrow M$ is said to have the property (a-f) if each of its tangent vectors does.

Particles with mass follow timelike future-directed curves on M.

Positive Energy Conditions of Hawking and Penrose '70

Weak energy condition: $G_{i j} v^{i} v^{j} \geq 0$ for all timelike $(v, x) \in T M$ (believed to be satisfied in all physical geometries)

Strong energy condition: $R_{i j} v^{i} v^{j} \geq 0$ for all timelike $(v, x) \in T M$, where

$$
G_{i j}=R_{i j}-\frac{1}{2} R g_{i j}
$$

here $R_{i j}$ is the Ricci curvature tensor and $R=g^{i j} R_{i j}$ is its trace.

- less universally satisfied
- does not imply weak energy condition
- implies gravity is attractive
- was used by Hawking and Penrose to show "trapped" spacelike surfaces (whose areas decrease instantaneously in all possible futures) imply singularities

We'll assume global hyperbolicity of (M, g), meaning

- M is smooth, connected, Hausdorff, and g is time-orientable
- has no closed future-directed curves (i.e. no 'back to the future')
- $J^{+}(x) \cap J^{-}(y)$ is compact for all $x, y \in M$, where
$J^{+}(x)$ is the set of points reached from x along future-directed curves $J^{-}(y)$ is the set of points reached from y along past-directed curves

On (M, \tilde{g}) Riemannian, for $p>1$

$$
d(x, y)^{p}:=\inf _{\sigma(0)=x, \sigma(1)=y} \int_{0}^{1}\left(\tilde{g}_{i j} \dot{\sigma}^{i} \dot{\sigma}^{j}\right)^{p / 2} d t
$$

is attained if M is complete, and σ attains it iff $\sigma \in \operatorname{Geo}_{d}(M)$, where
$\operatorname{Geo}_{d}(M):=\{\sigma:[0,1] \longrightarrow M \mid d(\sigma(s), \sigma(t))=(t-s) d(\sigma(0), \sigma(1)) \forall s<t\}$.

RECALL: On (M, g) Lorentzian, for $q<1$ the Lorentz distance (or time separation)

$$
\ell(x, y)^{q}:=\sup _{\substack{\sigma(0)=x, \sigma(1)=y \\ \text { futuree directed }}} \int_{0}^{1}\left(g_{i j} \dot{\sigma}^{i} \dot{\sigma}^{j}\right)^{q / 2} d t
$$

is attained if M is globally hyperbolic and $\ell(x, y)>0$. In this case σ attains it iff $\sigma \in G e o_{\ell}(M)$, where
$\operatorname{Geo}_{\ell}(M):=\{\sigma:[0,1] \longrightarrow M \mid \ell(\sigma(s), \sigma(t))=(t-s) \ell(\sigma(0), \sigma(1)) \forall s<t\}$.

The Lorentz distance is independent of q and satisfies a backwards triangle inequality:

$$
\ell(x, z)+\ell(z, y) \leq \ell(x, y) \quad \forall x, y, z \in M .
$$

it denotes the maximum a particle can age between x and y (twin paradox!)

Throughout we adopt the conventions

$$
(-\infty)^{q}:=-\infty=:(-\infty)^{1 / q}
$$

and

$$
\ell(x, y)=-\infty
$$

if no future-directed Lipschitz curve connects x to y.

In the Riemannian case, given unit-length geodesics $\sigma, \tau \in \operatorname{Geo}_{d}(M)$ through a common point $\sigma(0)=\tau(0)$, a local Taylor expansion yields

$$
\begin{aligned}
d^{2}(\sigma(s), \tau(t))= & s^{2}+t^{2}-2 s t \tilde{g}(\dot{\sigma}(0), \dot{\tau}(0)) \\
& -\frac{s^{2} t^{2}}{6} \tilde{R}_{i j k l} \dot{\sigma}^{i} \dot{\tau}^{j} \dot{\sigma}^{k}(0) \dot{\tau}^{\prime}(0)+O\left(|s|^{5}+|t|^{5}\right)
\end{aligned}
$$

where $\tilde{R}_{i j k l}$ is the Riemannian curvature tensor. It measures the leading correction to Pythagoras' law, and also

In the Riemannian case, given unit-length geodesics $\sigma, \tau \in G e o_{d}(M)$ through a common point $\sigma(0)=\tau(0)$, a local Taylor expansion yields

$$
\begin{aligned}
d^{2}(\sigma(s), \tau(t))= & s^{2}+t^{2}-2 s t \tilde{g}(\dot{\sigma}(0), \dot{\tau}(0)) \\
& -\frac{s^{2} t^{2}}{6} \tilde{R}_{i j k l} \dot{\sigma}^{i} \dot{\tau}^{j} \dot{\sigma}^{k}(0) \dot{\tau}^{\prime}(0)+O\left(|s|^{5}+|t|^{5}\right)
\end{aligned}
$$

where $\tilde{R}_{i j k l}$ is the Riemannian curvature tensor. It measures the leading correction to Pythagoras' law, and also the failure of covariant derivatives wrt $\tilde{g}^{\prime} s$ Levi-Civita connection $\left(\tilde{\nabla}_{i} \tilde{g}_{j k}=0\right)$ to commute:

$$
\tilde{R}_{i j k l} v^{k}=-\left[\tilde{\nabla}_{i}, \tilde{\nabla}_{j}\right] v^{\prime}
$$

Its trace $\tilde{R}_{i k}:=\tilde{g}^{j l} \tilde{R}_{i j k l}$ gives the Ricci tensor associated to $\tilde{g}_{i j}$.
The analogous formulas (with ℓ replacing d and the tildes removed) hold in the Lorentzian case.

Gravitational attractivity stems from positivity of $R_{i j}$ in timelike directions. But what has this to do with entropy or the second law?

Gravitational attractivity stems from positivity of $R_{i j}$ in timelike directions. But what has this to do with entropy or the second law?

In the Riemannian setting, a line of developments starting from M. '94

Otto \& Villani '00
Cordero-Erausquin, M., \& Schmuckenschläger '01 led von Renesse \& Sturm '04 to characterize $R_{i j} \geq 0$ via the convexity of Boltzmann's entropy along L^{2}-Kantorovich-Rubinstein-Wasserstein geodesics given by optimal transportation of probability measures.

Gravitational attractivity stems from positivity of $R_{i j}$ in timelike directions. But what has this to do with entropy or the second law?

In the Riemannian setting, a line of developments starting from
M. '94

Otto \& Villani '00
Cordero-Erausquin, M., \& Schmuckenschläger '01 led von Renesse \& Sturm '04 to characterize $R_{i j} \geq 0$ via the convexity of Boltzmann's entropy along L^{2}-Kantorovich-Rubinstein-Wasserstein geodesics given by optimal transportation of probability measures.

This inspired Sturm '06, Lott and Villani '09 to adopt such convexity as the definition of lower Ricci bounds in a (non-smooth) metric-measure setting, leading to the blossoming study of curvature-dimension spaces $(X, d, m) \in C D(K, N)$ developed by Ambrosio, Gigli, Savare, Erbar, Kuwada, Sturm, ...

$C D(K, N)$ and $R C D(K, N)$ spaces

- Highlights of the theory include contraction results for diffusion semigroups (Ambrosio et al, Carrillo-M.-Villani, Otto, Sturm)
- Bonnet-Myers diameter bounds (Lott-V., Sturm)
- Splitting (Gigli) and rigidity (Ketterer) results
- Comparison theorems for isoperimetric profiles (Cavalletti-Mondino, Milman)
- Rectifiability (Mondino-Naber)
- and presumably much more to come

Can something similar be done in the Lorentzian setting?

A function $\ell: X^{2} \longrightarrow\{-\infty\} \cup[0, \infty)$ on a (complete, separable) metric space (X, d) is called a time-separation or Lorentz-distance

$$
\begin{array}{rlrl}
\ell(x, y)+\ell(y, z) & \leq \ell(x, z) & \forall x, y, z \in X \\
\ell(x, x) & =0 & \forall x \in X \\
\ell(x, y) \geq 0 & \Rightarrow \ell(y, x)=-\infty & \text { unless } y & =x
\end{array}
$$

ℓ is continuous on the $\operatorname{closed} \operatorname{set}\{\ell \geq 0\}$
A curve $\sigma:[0,1] \longrightarrow M$ is timelike (respectively causal) if $0 \leq s<t \leq 1$ implies $\ell(\sigma(s), \sigma(t))>0$ (respectively ≥ 0)
(future-directed by convention).
(X, d, ℓ) is a Lorentzian geodesic space if $\ell(x, y)>0$ implies the existence of a (Lipschitz) curve $\sigma \in \operatorname{Geo}_{\ell}(X)$ with $\sigma(x)=0$ and $\sigma(1)=y$ where
$\operatorname{Geo}_{\ell}(X)=\{\sigma:[0,1] \longrightarrow M \mid \ell(\sigma(s), \sigma(t))=(t-s) \ell(\sigma(0), \sigma(1)) \forall s<t\}$
(X, d, ℓ) to be \mathcal{K}-globally hyperbolic, meaning no closed causal loops and compactness of $A, B \subset X$ implies compactness of $J(A, B):=J^{+}(A) \cap J^{-}(B)$ where

$$
\begin{aligned}
& J^{+}(A)=\bigcup_{a \in A} \ell(a, \cdot)^{-1}(\mathbb{R}) \\
& J^{-}(B)=\bigcup_{b \in B} \ell(\cdot, b)^{-1}(\mathbb{R})
\end{aligned}
$$

are the causal future of A and past of B

Use Lorentz distance $\ell(x, y)$ to lift the geometry from M to the set $\mathcal{P}_{c}(M)$ of (compactly supported for simplicity) Borel probability measures on M : Given $0<q \leq 1$ and $\mu_{0}, \mu_{1} \in \mathcal{P}_{c}(M)$ define

$$
\ell_{q}\left(\mu_{0}, \mu_{1}\right):=\left(\sup _{\gamma \in \Gamma\left(\mu_{0}, \mu_{1}\right)} \int_{M \times M} \ell(x, y)^{q} d \gamma(x, y)\right)^{1 / q}
$$

where the supremum is over joint measures $\gamma \geq 0$ on $M \times M$ having μ_{0} and μ_{1} as left and right marginals

- this is a (Kantorovich '42) optimal transport problem

Use Lorentz distance $\ell(x, y)$ to lift the geometry from M to the set $\mathcal{P}_{c}(M)$ of (compactly supported for simplicity) Borel probability measures on M : Given $0<q \leq 1$ and $\mu_{0}, \mu_{1} \in \mathcal{P}_{c}(M)$ define

$$
\ell_{q}\left(\mu_{0}, \mu_{1}\right):=\left(\sup _{\gamma \in \Gamma\left(\mu_{0}, \mu_{1}\right)} \int_{M \times M} \ell(x, y)^{q} d \gamma(x, y)\right)^{1 / q}
$$

where the supremum is over joint measures $\gamma \geq 0$ on $M \times M$ having μ_{0} and μ_{1} as left and right marginals

- this is a (Kantorovich '42) optimal transport problem with lower semicontinuous cost $-\ell^{q}$ whose gradient diverges as the boundary of the causal set $J^{+}=\ell^{-1}([0, \infty))$ is approached, and which jumps to $+\infty$ outside J^{+}.
- still the supremum is attained by some γ which will be called ℓ^{q}-optimal (unless $\left.\ell_{q}\left(\mu_{0}, \mu_{1}\right)=-\infty\right)$.

A close variant of $\ell_{q}\left(\mu_{0}, \mu_{1}\right)$ was defined in Eckstein \& Miller '17, who show ℓ_{q} inherits the reverse triangle inequality from $\ell(x, y)$:

$$
\ell_{q}\left(\mu_{0}, \mu_{1}\right) \geq \ell_{q}\left(\mu_{0}, \nu\right)+\ell_{\boldsymbol{q}}\left(\nu, \mu_{1}\right)
$$

DEFN: We say $\left(\mu_{s}\right)_{s \in[0,1]}$ is an $\ell_{q^{-}}$-geodesic in $\mathcal{P}_{c}(M)$ iff

A close variant of $\ell_{q}\left(\mu_{0}, \mu_{1}\right)$ was defined in Eckstein \& Miller '17, who show ℓ_{q} inherits the reverse triangle inequality from $\ell(x, y)$:

$$
\ell_{q}\left(\mu_{0}, \mu_{1}\right) \geq \ell_{q}\left(\mu_{0}, \nu\right)+\ell_{\boldsymbol{q}}\left(\nu, \mu_{1}\right)
$$

DEFN: We say $\left(\mu_{s}\right)_{s \in[0,1]}$ is an $\ell_{q^{-}}$-geodesic in $\mathcal{P}_{c}(M)$ iff

$$
\ell_{q}\left(\mu_{s}, \mu_{t}\right)=|t-s| \ell_{q}\left(\mu_{0}, \mu_{1}\right)>0 \quad \forall \quad 0 \leq s<t \leq 1 .
$$

- ℓ_{q}-geodesics exist, if $\ell>0$ a.e. wrt a Kantorovich maximizer $\gamma \in \Gamma\left(\mu_{0}, \mu_{1}\right)$
- When $\ell>0$ on $\operatorname{spt}\left[\mu_{0} \times \mu_{1}\right]$ (:= smallest closed set of full mass), so that μ_{1} lies entirely in the timelike future of μ_{0}, one can characterize the q-geodesic joining them. In the smooth setting, its unique provided $\mu_{0} \in \mathcal{P}_{c}^{a c}(M)$, meaning μ_{0} is absolutely continuous wrt the Lorentzian volume

$$
d \operatorname{vol}_{g}(x) \quad\left(:=\left|\operatorname{det} g_{i j}(x)\right|^{1 / 2} d^{n} x \text { in coordinates }\right) .
$$

To prove this, used linear programming duality to analyze the optimal transportation problem defining

$$
\text { (*) } \quad \frac{1}{q} \ell_{q}(\mu, \nu)^{q} \leq \inf _{u \oplus v \geq \frac{1}{q} \ell q} \int_{M} u d \mu+\int_{M} v d \nu
$$

Unfortunately, the singularities of ℓ may prevent attainment of this Kantorovich dual infimum by (Isc) potentials (u, v) satisfying

$$
u(x)+v(y) \geq \frac{1}{q} \ell(x, y)^{q} \quad \forall \quad(x, y) \in \operatorname{spt}[\mu \times \nu]=: X \times Y
$$

To prove this, used linear programming duality to analyze the optimal transportation problem defining

$$
(*) \quad \frac{1}{q} \ell_{q}(\mu, \nu)^{q} \leq \inf _{u \oplus v \geq \frac{1}{q} \ell q} \int_{M} u d \mu+\int_{M} v d \nu
$$

Unfortunately, the singularities of ℓ may prevent attainment of this Kantorovich dual infimum by (Isc) potentials (u, v) satisfying

$$
u(x)+v(y) \geq \frac{1}{q} \ell(x, y)^{q} \quad \forall \quad(x, y) \in \operatorname{spt}[\mu \times \nu]=: X \times Y
$$

DEFN: Fix $q \in(0,1]$. We say $(\mu, \nu) \in \mathcal{P}_{c}(M)$ are timelike q-dualizable if the infimum is finite (in which case equality holds in $*$) and there exists ℓ^{q}-maximizing $\gamma \in \Gamma(\mu, \nu)$ such that $\gamma[\{\ell>0\}]=1$.
This timelike q-dualizability is strong if there exists an ℓ_{+}^{q}-cyclically monotone $S \subset\{\ell>0\} \cap \operatorname{spt}[\mu \times \nu]$ outside of which all ℓ^{q}-maximers $\gamma \in \Gamma(\mu, \nu)$ vanish. Here $\ell_{+}=\max \{\ell, 0\}$ and cyclical monotonicity means

$$
\sum_{i=1}^{k} \ell^{q}\left(x_{i}, y_{i}\right) \geq \sum_{i=1}^{k} \ell^{q}\left(x_{i}, y_{i+1(\bmod k)}\right) \quad \forall k \in \mathbf{N} \text { and }\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k} \in S
$$

To define a Ricci lower bound requires a Radon measure m on (X, d) e.g. $d m(x)=e^{-V(x)} d \operatorname{vol}_{g}(x)$ with $V \in C^{2}(M)$ on a smooth spacetime DEFN We define the relative entropy by

$$
E_{m}(\mu):=\left\{\begin{array}{cl}
\int_{M} \rho \log \rho d m & \text { if } \mu \in \mathcal{P}_{c}^{a c}(M) \text { and } \rho:=\frac{d \mu}{d m}, \\
+\infty & \text { if } \mu \in \mathcal{P}_{c}(M) \backslash \mathcal{P}^{a c}(M) .
\end{array}\right.
$$

- our sign convention is opposite to that of the physicists' entropy

Entropic

conditions

DEF For $(K, N) \in \mathbb{R} \times[1, \infty]$ write $(X, d, \ell, m) \in w T C D_{q}^{e}(K, N)$ if and only if every strongly q-dualizable finite entropy pair $\mu_{0}, \mu_{1} \in \mathcal{P}_{c}(M)$ admit an ℓ_{q}-maximizing γ generating an ℓ_{q}-geodesic $\left(\mu_{t}\right)_{t \in[0,1]}$ along which the entropy $t \in[0,1] \mapsto e(t):=E_{m}\left(\mu_{t}\right)$ satisfies the (semi)convexity inequality

$$
e^{\prime \prime}(t) \geq \frac{e^{\prime}(t)^{2}}{N}+K\|\ell\|_{L^{2}(\gamma)}^{2}
$$

distributionally.

Entropic

DEF For $(K, N) \in \mathbb{R} \times[1, \infty]$ write $(X, d, \ell, m) \in w T C D_{q}^{e}(K, N)$ if and only if every strongly q-dualizable finite entropy pair $\mu_{0}, \mu_{1} \in \mathcal{P}_{c}(M)$ admit an ℓ_{q}-maximizing γ generating an ℓ_{q}-geodesic $\left(\mu_{t}\right)_{t \in[0,1]}$ along which the entropy $t \in[0,1] \mapsto e(t):=E_{m}\left(\mu_{t}\right)$ satisfies the (semi)convexity inequality

$$
e^{\prime \prime}(t) \geq \frac{e^{\prime}(t)^{2}}{N}+K\|\ell\|_{L^{2}(\gamma)}^{2}
$$

distributionally.
Cavalletti-Mondino '20+ go on to prove the set $w T C D_{q}^{e}(K, N)$ is closed in a suitable (pointed measured Gromov-Wasserstein) topology and its elements inherit remarkable similarities to smooth lower Ricci bounded spacetimes (such as an analog of the Hawking singularity theorem)
c.f. Burtscher-Ketterer-M.-Woolgar analogous sharp Riemannian injectivity bound

Positive energy = entropic displacement convexity

DEF (N-Bakry-Emery modified Ricci tensor; cf. Erbar-Kuwada-Sturm'15) Given $N \in(n, \infty]$ and $V \in C^{2}(M)$ define

$$
R_{i j}^{(N, V)}:=R_{i j}+\nabla_{i} \nabla_{j} V-\frac{1}{N-n}\left(\nabla_{i} V\right)\left(\nabla_{j} V\right)
$$

THM 1 (M. '20) Fix $(K, N, q) \in \mathbb{R} \times[1, \infty] \times(0,1)$ and a globally hyperbolic spacetime $\left(M^{n}, g\right)$ with $d m=e^{-V} d$ vol g. Then $\left(M, d_{\tilde{g}}, \ell_{g}, m\right) \in w T C D_{q}^{e}(K, N)$ if and only if either (a) $N=n, V=$ const and $R_{i j} v^{i} v^{j} \geq K$ for all unit timelike $(v, x) \in T M$, (b) $N>n$ and $R_{i j}^{(N, V)} v^{i} v^{j} \geq K$ for all unit timelike vectors $(v, x) \in T M$. Mondino-Suhr '22 Can also use entropic convexity to say when equality holds, leading to a weak (but unstable) notion of solution to Einstein Field equations.

Lazy Gas Experiment (M. 94, Villani 09)

16 Displacement convexity 1

Action minimizing paths satisfy pressureless Euler equation.

A Lorentzian analog for Hausdorff dimension and measure

 ?In metric geometry, Hausdorff dimension and measure play a central role:

$$
\mathcal{H}_{\delta}^{N}(A):=\inf \left\{c_{N} \sum\left(\operatorname{diam} A_{i}\right)^{N} \mid A \subset \cup A_{i}, \operatorname{diam} A_{i} \leq \delta\right\}
$$

makes $\mathcal{H}^{N}=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}$ a Borel measure and

$$
\begin{aligned}
\operatorname{dim}_{\mathcal{H}} A & =\inf \left\{N \geq 0 \mid \mathcal{H}^{N}(A)=0\right\} \\
& =\sup \left\{N \geq 0 \mid \mathcal{H}^{N}(A)=\infty\right\}
\end{aligned}
$$

A Lorentzian analog for Hausdorff dimension and measure

 ?In metric geometry, Hausdorff dimension and measure play a central role:

$$
\mathcal{H}_{\delta}^{N}(A):=\inf \left\{c_{N} \sum\left(\operatorname{diam} A_{i}\right)^{N} \mid A \subset \cup A_{i}, \operatorname{diam} A_{i} \leq \delta\right\}
$$

makes $\mathcal{H}^{N}=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}$ a Borel measure and

$$
\begin{aligned}
\operatorname{dim}_{\mathcal{H}} A & =\inf \left\{N \geq 0 \mid \mathcal{H}^{N}(A)=0\right\} \\
& =\sup \left\{N \geq 0 \mid \mathcal{H}^{N}(A)=\infty\right\}
\end{aligned}
$$

DePhillipis-Gigli '18 call $(X, d, m) \in C D(K, N)$ non-collapsed if $m=\mathcal{H}^{N}$ (inspired by Colding-Cheeger's dichotomy for Ricci limit spaces)

Brue-Semola '19: $(X, d, m) \in R C D(K, N)$ implies $\exists k \in\{1, \ldots, N\}$ such that $\left.m\right|_{R} \ll \mathcal{H}^{k}$ and $m(X \backslash R)=0$.

LEMMA (M.-Sämann) Given (X, d, ℓ) and $A \subset X$ setting

$$
\mathcal{V}_{\delta}^{N}(A):=\inf \left\{\omega_{N} \sum \ell\left(a_{i}, b_{i}\right)^{N} \geq 0 \mid A \subset \cup J\left(a_{i}, b_{i}\right), \operatorname{diamJ}\left(a_{i}, b_{i}\right) \leq \delta\right\}
$$

makes $\mathcal{V}^{N}=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}$ a Borel measure. We call

$$
\begin{aligned}
\operatorname{dim}_{\ell} A & =\inf \left\{N \geq 0 \mid \mathcal{V}^{N}(A)=0\right\} \\
& \left(=\sup \left\{N \geq 0 \mid \mathcal{V}^{N}(A)=\infty\right\}\right)
\end{aligned}
$$

the geometric dimension of A

LEMMA (M.-Sämann) Given (X, d, ℓ) and $A \subset X$ setting

$$
\mathcal{V}_{\delta}^{N}(A):=\inf \left\{\omega_{N} \sum \ell\left(a_{i}, b_{i}\right)^{N} \geq 0 \mid A \subset \cup J\left(a_{i}, b_{i}\right), \operatorname{diamJ}\left(a_{i}, b_{i}\right) \leq \delta\right\}
$$

makes $\mathcal{V}^{N}=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}$ a Borel measure. We call

$$
\begin{aligned}
\operatorname{dim}_{\ell} A & =\inf \left\{N \geq 0 \mid \mathcal{V}^{N}(A)=0\right\} \\
& \left(=\sup \left\{N \geq 0 \mid \mathcal{V}^{N}(A)=\infty\right\}\right)
\end{aligned}
$$

the geometric dimension of A (assumes $\lim _{d(x, y) \rightarrow 0} \ell(x, y)=0$ locally uniformly; depends mostly on ℓ, mildly on d).

Already in Minkowski space \mathbb{R}_{1}^{n}, this geometric dimension dintinguishes spacelike from null subspaces $S \subset \mathbb{R}_{1}^{n}$.

If S is spacelike (i.e. Euclidean), then $\operatorname{dim}_{\mathcal{H}} S=\operatorname{dim}_{\ell} S$ and the nontrivial measures \mathcal{H}^{N} and \mathcal{V}^{N} are positive multiples of each other;

If the metric degenerates on S then $\operatorname{dim}_{\mathcal{H}} S=N=1+\operatorname{dim}_{\ell} S$ and \mathcal{V}^{N-1} and $\mathcal{H}^{0} \times \mathcal{H}^{N-1}$ are positive multiplies of each other.

If $(X, d, \ell, m) \in w T C D_{q}^{e}(K, N)$ one expects doubling properties to yield $N \geq \operatorname{dim}_{\ell} X$ (by analogy with Hausdorff dimension in the $(X, d, m) \in C D(K, N)$ case) but we were not able to prove this in general. However we were able to show this for continuous spacetimes (a case of mathematical physical interest):

THM (M.-SÄMANN) If $\left(X, d, \ell, \operatorname{vol}_{g}\right) \in w T C D_{q}^{e}(K, N)$ arises from a smooth spacetime $X=M^{n}$ with a merely continuous metric tensor $g_{i j}$ (so timelike branching can occur), then at least $N+1 \geq \operatorname{dim}_{\ell} X=n$. Moreover, if timelike branching does not occur then $N \geq \operatorname{dim}_{\ell} X=n$ as expected.

Conclusions: optimal transport relates gravity to entropy

1. Fractional powers $0<q<1$ of the time-separation $\ell(x, y)$ come from a Lagrangian L, smooth and strictly(!) convex away from the light cone.
2. Optimal transport with respect to this cost lifts the geometry from spacetime events M to probability measures on M.
3. strong timelike q-dualizability of the target and source makes this transportation problem and its dual analytically tractable.
4. Convexity properties of Boltzmann's entropy along timelike geodesics of probability measures provide a robust formulation of the strong energy condition of Hawking and Penrose '70 - and via Mondino \& Suhr 18+'s parallel work, of Einstein's field equations.
5. This provides a new approach to gravity without smoothness - much desired in view of the singularity theorems from general relativity.
6. Whereas the second law of thermodynamics is encoded in the first time-derivative of entropy, the Einstein equations of gravity are encoded in its second time-derivative along q-geodesics.

Conclusions: optimal transport relates gravity to entropy

1. Fractional powers $0<q<1$ of the time-separation $\ell(x, y)$ come from a Lagrangian L, smooth and strictly(!) convex away from the light cone.
2. Optimal transport with respect to this cost lifts the geometry from spacetime events M to probability measures on M.
3. strong timelike q-dualizability of the target and source makes this transportation problem and its dual analytically tractable.
4. Convexity properties of Boltzmann's entropy along timelike geodesics of probability measures provide a robust formulation of the strong energy condition of Hawking and Penrose '70 - and via Mondino \& Suhr 18+'s parallel work, of Einstein's field equations.
5. This provides a new approach to gravity without smoothness - much desired in view of the singularity theorems from general relativity.
6. Whereas the second law of thermodynamics is encoded in the first time-derivative of entropy, the Einstein equations of gravity are encoded in its second time-derivative along q-geodesics.

THM (Lagrangian characterization of q-geodesics)
Fix $0<q<1$. If $\left(\mu_{0}, \mu_{1}\right) \in \mathcal{P}_{c}^{2}(M)$ is q-separated by (γ, u, v) and $\mu_{0} \ll \operatorname{vol}_{g}$ then the map $F_{s}(x):=\exp _{x} s D H(D u(x) ; q)$ induces the unique q-geodesic $s \in[0,1] \mapsto \mu_{s}$ in $\mathcal{P}_{c}(M)$ linking μ_{0} to μ_{1}.
Moreover, $\mu_{s} \ll \operatorname{vol}_{g}$ if $s<1$ (by using uniform convexity of L away from light cone to adapt Monge-Mather 'shortening' estimate).

Here $\mu_{s}:=\left(F_{s}\right)_{\#} \mu_{0}$ is defined by

$$
\mu_{s}[\Omega]:=\mu_{0}\left[F_{s}^{-1}(\Omega)\right] \quad \forall \Omega \subset M,
$$

THM (Lagrangian characterization of q-geodesics)
Fix $0<q<1$. If $\left(\mu_{0}, \mu_{1}\right) \in \mathcal{P}_{c}^{2}(M)$ is q-separated by (γ, u, v) and $\mu_{0} \ll \operatorname{vol}_{g}$ then the map $F_{s}(x):=\exp _{x} s D H(D u(x) ; q)$ induces the unique q-geodesic $s \in[0,1] \mapsto \mu_{s}$ in $\mathcal{P}_{c}(M)$ linking μ_{0} to μ_{1}.
Moreover, $\mu_{s} \ll \operatorname{vol}_{g}$ if $s<1$ (by using uniform convexity of L away from light cone to adapt Monge-Mather 'shortening' estimate).

Here $\mu_{s}:=\left(F_{s}\right)_{\#} \mu_{0}$ is defined by

$$
\mu_{s}[\Omega]:=\mu_{0}\left[F_{s}^{-1}(\Omega)\right] \quad \forall \Omega \subset M,
$$

F_{s} is an optimal (i.e. Monge) map between μ_{0} and μ_{s}, and
$\gamma=\left(i d \times F_{1}\right)_{\#} \mu_{0}$ uniquely maximizes the Kantorovich problem defining $\ell_{q}\left(\mu_{0}, \mu_{1}\right)$.

Setting $\rho_{s}:=\frac{d \mu_{s}}{d v o l g}$ yields the Monge-Ampère type equation

$$
\rho_{0}(x)=\rho_{s}\left(F_{s}(x)\right)\left|J F_{s}(x)\right| \quad \rho_{0}-\text { a.e. },
$$

where $J F_{s}(x)=\operatorname{det} D \tilde{F}_{s}(x)$ is the (approximate) Jacobian of F_{s} and

$$
\left.\frac{\partial}{\partial s}\right|_{s=0}\left(\tilde{D} F_{s}\right)=\left.D^{2} H\right|_{D u} \tilde{D}^{2} u
$$

$$
\begin{aligned}
& u(x)+v(y) \geq \frac{l^{2}}{q}(x, y) \\
& \text { on } S \text { : } D_{u}(x)=D_{x} \frac{q^{q}(x, y)}{q}=-\left\lvert\, q-1(x, y) \frac{\dot{\sigma}(0)}{|f(\theta)|_{g}}\right. \\
& D H(D u(x))=-|0 u(x)|^{q^{\prime}-1} \quad D v^{\prime}(x)=\dot{\sigma}(0) \\
& \text { Puclig }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma(s)=e_{x} p_{x} s \dot{\sigma}(v)
\end{aligned}
$$

