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Two famous sign laws in physics

• gravity is always attractive, never repulsive

• entropy always goes up, never down

Might these be related?

• Bekenstein ’73: 2nd law of black hole dynamics
area of horizons can only increase

• Jacobson ’95: Einstein’s equation follows from Entropy := Horizon Area

• E Verlinde ’11: Gravity as an emergent entropic (i.e. statistical) force

Today I’ll describe a connection between gravity and entropy using optimal
transport (M. ’20) (Mondino-Suhr ’22)
which allows one to build a nonsmooth theory of gravity
(Kunzinger-Sämann ’18) (Cavalletti-Mondino ’20+) (M.-Sämann ’21+)
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Gravity

Newton (1687)
Non-negativity of classical mass implies gravity acts purely attractively

F = minertiala = −mgravitationalDV where ∆V = 4πρ ≥ 0

Of course, there were some observations Newton couldn’t explain...

- the perihelion precession of Mercury, and

• minertial = mgravitational
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Terminology and conventions

0 6= v ∈ TxM is

(a) timelike if g(v , v) > 0
(b) lightlike (or null) if ” = 0
(c) spacelike if ” < 0
(d) causal if (a) or (b) hold, in which case
(e) future-directed if it lies in the green cone
(f) past-directed if it lies in the red cone

A C 1 curve σ : (a, b)→ M is said to have the property (a-f) if each of its
tangent vectors does.

Particles with mass follow timelike future-directed curves on M.
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Positive Energy Conditions of Hawking and Penrose ’70

Weak energy condition: Gijv
iv j ≥ 0 for all timelike (v , x)∈ TM

(believed to be satisfied in all physical geometries)

Strong energy condition: Rijv
iv j ≥ 0 for all timelike (v , x) ∈ TM, where

Gij = Rij −
1

2
Rgij

here Rij is the Ricci curvature tensor and R = g ijRij is its trace.

- less universally satisfied
- does not imply weak energy condition
- implies gravity is attractive
- was used by Hawking and Penrose to show “trapped” spacelike surfaces
(whose areas decrease instantaneously in all possible futures) imply
singularities
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We’ll assume global hyperbolicity of (M, g), meaning
• M is smooth, connected, Hausdorff, and g is time-orientable
• has no closed future-directed curves (i.e. no ‘back to the future’)
• J+(x) ∩ J−(y) is compact for all x , y ∈ M, where
J+(x) is the set of points reached from x along future-directed curves
J−(y) is the set of points reached from y along past-directed curves

On (M, g̃) Riemannian, for p > 1

d(x , y)p := inf
σ(0)=x ,σ(1)=y

∫ 1

0
(g̃ij σ̇

i σ̇j)p/2dt

is attained if M is complete, and σ attains it iff σ ∈ Geod(M), where

Geod(M) := {σ : [0, 1] −→ M | d(σ(s), σ(t)) = (t−s)d(σ(0), σ(1))∀s < t}.
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RECALL: On (M, g) Lorentzian, for q < 1 the Lorentz distance (or time
separation)

`(x , y)q := sup
σ(0)=x,σ(1)=y
future directed

∫ 1

0
(gij σ̇

i σ̇j)q/2dt

is attained if M is globally hyperbolic and `(x , y) > 0. In this case σ
attains it iff σ ∈ Geo`(M), where

Geo`(M) := {σ : [0, 1] −→ M | `(σ(s), σ(t)) = (t−s)`(σ(0), σ(1))∀s < t}.
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The Lorentz distance is independent of q and satisfies a backwards triangle
inequality:

`(x , z) + `(z , y) ≤ `(x , y) ∀x , y , z ∈ M.

it denotes the maximum a particle can age between x and y (twin
paradox!)

Throughout we adopt the conventions

(−∞)q := −∞ =: (−∞)1/q

and
`(x , y) = −∞

if no future-directed Lipschitz curve connects x to y .
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In the Riemannian case, given unit-length geodesics σ, τ ∈ Geod(M)
through a common point σ(0) = τ(0), a local Taylor expansion yields

d2(σ(s), τ(t)) = s2 + t2 − 2stg̃(σ̇(0), τ̇(0))

−s2t2

6
R̃ijkl σ̇

i τ̇ j σ̇k(0)τ̇ l(0) + O(|s|5 + |t|5)

where R̃ijkl is the Riemannian curvature tensor. It measures the leading
correction to Pythagoras’ law, and also

the failure of covariant derivatives
wrt g̃ ’s Levi-Civita connection (∇̃i g̃jk = 0) to commute:

R̃ijklv
k = −[∇̃i , ∇̃j ]v

l

Its trace R̃ik := g̃ jl R̃ijkl gives the Ricci tensor associated to g̃ij .

The analogous formulas (with ` replacing d and the tildes removed) hold
in the Lorentzian case.
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Gravitational attractivity stems from positivity of Rij in timelike directions.
But what has this to do with entropy or the second law?

In the Riemannian setting, a line of developments starting from
M. ’94
Otto & Villani ’00
Cordero-Erausquin, M., & Schmuckenschläger ’01 led
von Renesse & Sturm ’04 to characterize Rij ≥ 0 via the convexity of
Boltzmann’s entropy along L2-Kantorovich-Rubinstein-Wasserstein
geodesics given by optimal transportation of probability measures.

This inspired Sturm ’06, Lott and Villani ’09 to adopt such convexity as
the definition of lower Ricci bounds in a (non-smooth) metric-measure
setting, leading to the blossoming study of curvature-dimension spaces
(X , d ,m) ∈ CD(K ,N) developed by Ambrosio, Gigli, Savare, Erbar,
Kuwada, Sturm, ...
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CD(K,N) and RCD(K,N) spaces
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Can something similar be done in the Lorentzian setting?

A function ` : X 2 −→ {−∞} ∪ [0,∞) on a (complete, separable) metric
space (X , d) is called a time-separation or Lorentz-distance

`(x , y) + `(y , z) ≤`(x , z) ∀x , y , z ∈ X

`(x , x) =0 ∀x ∈ X

`(x , y) ≥ 0⇒`(y , x) = −∞ unless y = x

` is continuous on the closed set{` ≥ 0}

A curve σ : [0, 1] −→ M is timelike (respectively causal) if 0 ≤ s < t ≤ 1
implies `(σ(s), σ(t)) > 0 (respectively ≥ 0)
(future-directed by convention).
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(X , d , `) is a Lorentzian geodesic space if `(x , y) > 0 implies the existence
of a (Lipschitz) curve σ ∈ Geo`(X ) with σ(x) = 0 and σ(1) = y where

Geo`(X ) = {σ : [0, 1] −→ M | `(σ(s), σ(t)) = (t − s)`(σ(0), σ(1)) ∀s < t}

(X , d , `) to be K-globally hyperbolic, meaning no closed causal loops and
compactness of A,B ⊂ X implies compactness of
J(A,B) := J+(A) ∩ J−(B) where

J+(A) =
⋃
a∈A

`(a, ·)−1(R)

J−(B) =
⋃
b∈B

`(·, b)−1(R)

are the causal future of A and past of B
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Use Lorentz distance `(x , y) to lift the geometry from M to the set Pc(M)
of (compactly supported for simplicity) Borel probability measures on M:
Given 0 < q ≤ 1 and µ0, µ1 ∈ Pc(M) define

`q(µ0, µ1) :=

(
sup

γ∈Γ(µ0,µ1)

∫
M×M

`(x , y)qdγ(x , y)

)1/q

,

where the supremum is over joint measures γ ≥ 0 on M ×M having µ0

and µ1 as left and right marginals

- this is a (Kantorovich ’42) optimal transport problem

with lower
semicontinuous cost −`q whose gradient diverges as the boundary of the
causal set J+ = `−1([0,∞)) is approached, and which jumps to +∞
outside J+.

- still the supremum is attained by some γ which will be called `q-optimal
(unless `q(µ0, µ1) = −∞).
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A close variant of `q(µ0, µ1) was defined in Eckstein & Miller ’17, who
show `q inherits the reverse triangle inequality from `(x , y):

`q(µ0, µ1) ≥ `q(µ0, ν) + `q(ν, µ1).

DEFN: We say (µs)s∈[0,1] is an `q-geodesic in Pc(M) iff

`q(µs , µt) = |t − s|`q(µ0, µ1)> 0 ∀ 0 ≤ s < t ≤ 1.

- `q-geodesics exist, if ` > 0 a.e. wrt a Kantorovich maximizer
γ ∈ Γ(µ0, µ1)

- When ` > 0 on spt[µ0 × µ1] (:= smallest closed set of full mass),
so that µ1 lies entirely in the timelike future of µ0, one can characterize
the q-geodesic joining them. In the smooth setting, its unique provided
µ0 ∈ Pac

c (M), meaning µ0 is absolutely continuous wrt the Lorentzian
volume

dvolg (x) ( := | det gij(x)|1/2dnx in coordinates).
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To prove this, used linear programming duality to analyze the optimal
transportation problem defining

(∗) 1

q
`q(µ, ν)q ≤ inf

u⊕v≥ 1
q
`q

∫
M
udµ+

∫
M
vdν,

Unfortunately, the singularities of ` may prevent attainment of this
Kantorovich dual infimum by (lsc) potentials (u, v) satisfying

u(x) + v(y) ≥ 1

q
`(x , y)q ∀ (x , y) ∈ spt[µ× ν] =: X × Y

DEFN: Fix q ∈ (0, 1]. We say (µ, ν) ∈ Pc(M) are timelike q-dualizable if
the infimum is finite (in which case equality holds in ∗) and there exists
`q-maximizing γ ∈ Γ(µ, ν) such that γ[{` > 0}] = 1.
This timelike q-dualizability is strong if there exists an `q+-cyclically
monotone S ⊂ {` > 0} ∩ spt[µ× ν] outside of which all `q-maximers
γ ∈ Γ(µ, ν) vanish. Here `+ = max{`, 0} and cyclical monotonicity means

k∑
i=1

`q(xi , yi ) ≥
k∑

i=1

`q(xi , yi+1(modk)) ∀k ∈ N and {(xi , yi )}ki=1 ∈ S
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To define a Ricci lower bound requires a Radon measure m on (X , d)

e.g. dm(x) = e−V (x)dvolg (x) with V ∈ C 2(M) on a smooth spacetime

DEFN We define the relative entropy by

Em(µ) :=

{ ∫
M ρ log ρdm if µ ∈ Pac

c (M) and ρ := dµ
dm ,

+∞ if µ ∈ Pc(M) \ Pac(M).

- our sign convention is opposite to that of the physicists’ entropy
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Entropic weak timelike curvature-dimension conditions

DEF For (K ,N) ∈ R× [1,∞] write (X , d , `,m) ∈ wTCDe
q(K ,N) if and

only if every strongly q-dualizable finite entropy pair µ0, µ1 ∈ Pc(M) admit
an `q-maximizing γ generating an `q-geodesic (µt)t∈[0,1] along which the
entropy t ∈ [0, 1] 7→ e(t) := Em(µt) satisfies the (semi)convexity inequality

e ′′(t)≥e ′(t)2

N
+ K‖`‖2

L2(γ)

distributionally.

Cavalletti-Mondino ’20+ go on to prove the set wTCDe
q(K ,N) is closed in

a suitable (pointed measured Gromov-Wasserstein) topology and its
elements inherit remarkable similarities to smooth lower Ricci bounded
spacetimes (such as an analog of the Hawking singularity theorem)

c.f. Burtscher-Ketterer-M.-Woolgar analogous sharp Riemannian
injectivity bound
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Positive energy = entropic displacement convexity

DEF (N-Bakry-Emery modified Ricci tensor; cf. Erbar-Kuwada-Sturm’15)
Given N ∈ (n,∞] and V ∈ C 2(M) define

R
(N,V )
ij := Rij +∇i∇jV −

1

N − n
(∇iV )(∇jV )

THM 1 (M. ’20) Fix (K ,N, q) ∈ R× [1,∞]× (0, 1) and a globally
hyperbolic spacetime (Mn, g) with dm = e−V dvolg . Then
(M, dg̃ , `g ,m) ∈ wTCDe

q(K ,N) if and only if either

(a) N = n, V = const and Rijv
iv j ≥ K for all unit timelike (v , x) ∈ TM,

(b) N > n and R
(N,V )
ij v iv j ≥ K for all unit timelike vectors (v , x) ∈ TM.

Mondino-Suhr ’22 Can also use entropic convexity to say when equality
holds, leading to a weak (but unstable) notion of solution to Einstein Field
equations.
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A Lorentzian analog for Hausdorff dimension and measure
?

In metric geometry, Hausdorff dimension and measure play a central role:

HN
δ (A) := inf{cN

∑
(diamAi )

N | A ⊂ ∪Ai , diamAi ≤ δ}

makes HN = supδ>0HN
δ a Borel measure and

dimHA = inf{N ≥ 0 | HN(A) = 0}
= sup{N ≥ 0 | HN(A) =∞}

DePhillipis-Gigli ’18 call (X , d ,m) ∈ CD(K ,N) non-collapsed if m = HN

(inspired by Colding-Cheeger’s dichotomy for Ricci limit spaces)

Brue-Semola ’19: (X , d ,m) ∈ RCD(K ,N) implies ∃k ∈ {1, . . . ,N} such
that m|R � Hk and m(X \ R) = 0.

Robert J McCann (Toronto) Einstein, Kantorovich and Boltzmann UT Knoxville 28 April 2022 28 / 34



A Lorentzian analog for Hausdorff dimension and measure
?

In metric geometry, Hausdorff dimension and measure play a central role:

HN
δ (A) := inf{cN

∑
(diamAi )

N | A ⊂ ∪Ai , diamAi ≤ δ}

makes HN = supδ>0HN
δ a Borel measure and

dimHA = inf{N ≥ 0 | HN(A) = 0}
= sup{N ≥ 0 | HN(A) =∞}

DePhillipis-Gigli ’18 call (X , d ,m) ∈ CD(K ,N) non-collapsed if m = HN

(inspired by Colding-Cheeger’s dichotomy for Ricci limit spaces)

Brue-Semola ’19: (X , d ,m) ∈ RCD(K ,N) implies ∃k ∈ {1, . . . ,N} such
that m|R � Hk and m(X \ R) = 0.

Robert J McCann (Toronto) Einstein, Kantorovich and Boltzmann UT Knoxville 28 April 2022 28 / 34



LEMMA (M.-Sämann) Given (X , d , `) and A ⊂ X setting

VNδ (A) := inf{ωN

∑
`(ai , bi )

N ≥ 0 | A ⊂ ∪J(ai , bi ), diamJ(ai , bi ) ≤ δ}

makes VN = supδ>0HN
δ a Borel measure. We call

dim`A = inf{N ≥ 0 | VN(A) = 0}
(= sup{N ≥ 0 | VN(A) =∞})

the geometric dimension of A

(assumes lim
d(x ,y)→0

`(x , y) = 0 locally

uniformly; depends mostly on `, mildly on d).
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LEMMA (M.-Sämann) Given (X , d , `) and A ⊂ X setting

VNδ (A) := inf{ωN

∑
`(ai , bi )

N ≥ 0 | A ⊂ ∪J(ai , bi ), diamJ(ai , bi ) ≤ δ}

makes VN = supδ>0HN
δ a Borel measure. We call

dim`A = inf{N ≥ 0 | VN(A) = 0}
(= sup{N ≥ 0 | VN(A) =∞})

the geometric dimension of A (assumes lim
d(x ,y)→0

`(x , y) = 0 locally

uniformly; depends mostly on `, mildly on d).

Robert J McCann (Toronto) Einstein, Kantorovich and Boltzmann UT Knoxville 28 April 2022 29 / 34



Already in Minkowski space Rn
1, this geometric dimension dintinguishes

spacelike from null subspaces S ⊂ Rn
1.

If S is spacelike (i.e. Euclidean), then dimH S = dim` S and the nontrivial
measures HN and VN are positive multiples of each other;

If the metric degenerates on S then dimH S = N = 1 + dim` S and VN−1

and H0 ×HN−1 are positive multiplies of each other.
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If (X , d , `,m) ∈ wTCDe
q(K ,N) one expects doubling properties to yield

N ≥ dim` X (by analogy with Hausdorff dimension in the
(X , d ,m) ∈ CD(K ,N) case) but we were not able to prove this in general.
However we were able to show this for continuous spacetimes (a case of
mathematical physical interest):

THM (M.-SÄMANN) If (X , d , `, volg ) ∈ wTCDe
q(K ,N) arises from a

smooth spacetime X = Mn with a merely continuous metric tensor gij (so
timelike branching can occur), then at least N + 1 ≥ dim` X = n.
Moreover, if timelike branching does not occur then N ≥ dim` X = n as
expected.
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Conclusions: optimal transport relates gravity to entropy

1. Fractional powers 0 < q < 1 of the time-separation `(x , y) come from a
Lagrangian L, smooth and strictly(!) convex away from the light cone.

2. Optimal transport with respect to this cost lifts the geometry from
spacetime events M to probability measures on M.

3. strong timelike q-dualizability of the target and source makes this
transportation problem and its dual analytically tractable.

4. Convexity properties of Boltzmann’s entropy along timelike geodesics of
probability measures provide a robust formulation of the strong energy
condition of Hawking and Penrose ’70 — and via Mondino & Suhr 18+’s
parallel work, of Einstein’s field equations.

5. This provides a new approach to gravity without smoothness — much
desired in view of the singularity theorems from general relativity.

6. Whereas the second law of thermodynamics is encoded in the first
time-derivative of entropy, the Einstein equations of gravity are encoded in
its second time-derivative along q-geodesics.

THANK YOU!
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THM (Lagrangian characterization of q-geodesics)
Fix 0 < q < 1. If (µ0, µ1) ∈ P2

c (M) is q-separated by (γ, u, v) and
µ0 << volg then the map Fs(x) := expx sDH(Du(x); q) induces the
unique q-geodesic s ∈ [0, 1] 7→ µs in Pc(M) linking µ0 to µ1.
Moreover, µs << volg if s < 1 (by using uniform convexity of L away from
light cone to adapt Monge-Mather ‘shortening’ estimate).

Here µs := (Fs)#µ0 is defined by

µs [Ω] := µ0[F−1
s (Ω)] ∀Ω ⊂ M,

Fs is an optimal (i.e. Monge) map between µ0 and µs , and
γ = (id × F1)#µ0 uniquely maximizes the Kantorovich problem defining
`q(µ0, µ1).

Setting ρs := dµs
dvolg

yields the Monge-Ampère type equation

ρ0(x) = ρs(Fs(x))|JFs(x)| ρ0 − a.e.,

where JFs(x) = detDF̃s(x) is the (approximate) Jacobian of Fs and

∂

∂s

∣∣∣
s=0

(D̃Fs) = D2H|DuD̃
2u.
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