
On the Monopolist’s Problem Facing Consumers with
Linear and Nonlinear Price Preferences

Robert J McCann

University of Toronto

www.math.toronto.edu/mccann

with Kelvin Shuangjian Zhang (ENS Paris / Waterloo / Fudan)

CPAM ’19 + work in progress

21 April 2022

Robert J McCann (Toronto) On Concavity of the Monopolist’s Problem 21 April 2022 1 / 28



Outline

1 Monopolist’s problem

2 Examples and History

3 Hypotheses

4 Results

5 Proofs

6 A new duality certifying solutions

7 A free boundary problem hidden in Rochet-Choné’s square example
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Monopolist’s problem

Given compact sets X ⊂ Rm, Y ⊂ Rn, Z = [z ,∞) ⊂ R, and ‘direct utility’
G (x , y , z) = value of product y ∈ Y to buyer x ∈ X at price z ∈ Z
dµ(x) = relative frequency of buyer x ∈ X (as compared to x ′ ∈ X )
π(x , y , z) = value to monopolist of selling y to x at price z

Monopolist’s problem: choose price menu v : Y −→ Z to maximize profits

Π̃(v) :=

∫
X
π(x , yv (x), v(yv (x))dµ(x), where

Agent x ’s problem: choose yv (x) to maximize

yv (x) ∈ arg max
y∈Y

G (x , y , v(y))

Constraints: v lower semicontinuous, (0, 0) ∈ Y × Z and v(0) = 0.
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Examples

• airline ticket pricing

• insurance: monopolist’s profit π(x , y , z) may depend strongly on buyer’s
identity x , even if regulation/ ignorance prohibits price v(y) from doing so

• z-dependence of G (x , y , z) reflects different buyers price sensitivity / risk
non-neutrality

• educational signaling

• optimal taxation: replace profit maximization with a budget constraint
for providing services
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Some history: G (x , y , z) = b(x , y)− z

Mirrlees ’71, Spence ’73 (n = 1 = m): ∂2b
∂x∂y > 0 implies dyv

dx ≥ 0

Rochet-Choné ’98 (n = m > 1): b(x , y) = x · y bilinear implies
y v (x) = Dv∗(x) convex gradient; bunching

for π(x , y , z) = z − 1
2 |y |

2
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Carlier-Lachand-Robert ’03: v∗ ∈ C 1(sptµ); Caffarelli-Lions v∗ ∈ C 1,1

Carlier ’01: b(x , y) general implies existence of optimizer v = vbb̃

Chen ’13: u ∈ C 1 under Ma-Trudinger-Wang (MTW) conditions, where

u(x) = vb(x):= max
y∈Y

b(x , y)− v(y)

is called the ‘indirect utility’ to shopper x

Figalli-Kim-M. ’11:
convexity of principal’s problem under strengthening of (MTW) on b(x , y)

Noldeke-Samuelson (ECMA ’18), Zhang (ET ’19):
existence of maximizing v for general G ∈ C 0

Daskalakis-Dekelbaum-Tzamos (ECMA ’17), Kleiner-Manelli (ECMA ’19):
duality for multigood auctions
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Hypothesis (c.f. Trudinger’s generated Jacobian equations)

(G0) G ∈ C 1(X × Y × Z ), m ≥ n, and for each x , x0 ∈ X ⊂ Rm:

(G1) (y , z) ∈ Y × Z 7→ (DxG ,G )(x , y , z) is a homeomorphism

(G2) with convex range (Y × Z )x := (DxG ,G )(x ,Y ,Z ) and inverse ȳG .

DEFN: t ∈ [0, 1] 7→ (x , yt , zt) ∈ X × Y × Z is called a G -segment if

(DxG ,G )(x , yt , zt) = (1− t)(DxG ,G )(x , y0, z0) + t(DxG ,G )(x , y1, z1)

(G3) Assume t 7→ G (x0, yt , zt) is convex along each G -segment (x , yt , zt)

(G4) ∂G
∂z < 0 throughout X × Y × Z (i.e. buyers prefer lower prices)

(G5) infz∈Z G (x , y , z) < G (x , 0, 0) for all (x , y) ∈ X × Y

(i.e. high enough prices force all buyers out of market)

(G6) π ∈ C 0(X × Y × Z )
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Monopolists problem in terms of buyers’ indirect utilities u

u(x) := vG (y) := max
y∈Y

G (x , y , v(y)) (1)

implies
(Du, u)(x) = (DxG ,G )(x , y v (x), v(y v (x))

so we identify

(y v (x), v(y v (x)))

= ȳG (Du(x), u(x), x)

and minimize

Π̃(v) =

∫
X
G (x , ȳG (Du(x , ), u(x), x))dµ(x)

=: Π(u)

among u of form (1) (i.e. among so called G -convex u(·) ≥ G (·, 0, 0))
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Results

max
G(·,0,0)≤u∈U

Π(u)

where

U“ := ”{u | u(·) = sup
y∈Y

G (·, y , v(y)) on X for some v : Y −→ Z}

THM 0: Given (G0-G1, G4-G6) the maximum above is attained. If
µ << Lm the map x → ȳG (Du(x), u(x), x) gives the consumer to
(product,price) correspondence.

THM 1: If (G0-G2, G4-G5) hold then U is convex if and only if (G3) holds.

THM 2: If (G0-G6) hold then Π is concave on U for all µ << Lm if and
only if t ∈ [0, 1] 7→ π(x , yt , zt) is concave on every G -segment (x , yt , zt).

THM 2’: same statement with both concaves replaced by convex.
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• π is 2-uniformly concave along all G -segments if and only if Π is
2-uniformly concave on U ⊂W 1,2(X , dµ).

• alternately, strict concavity of π implies that of Π.

• in either case above, when µ << Lm the hypotheses of THM 2 imply
the principal’s optimal strategy u is unique µ-a.e. and stable:

i.e. (Gi , πi , µi )→ (G∞, π∞, µ∞) in C 2 × C 0 × (C 0)∗ implies ui → u∞ in
L∞(dµ∞)

• the Rochet-Choné G (x , y , z) = x · y − z lies on the boundary of the set
of preferences satisfying (G3)

• if ‖A‖C1 ≤ 1, ‖B‖C1 ≤ 1 with A convex, G (x , y) = x · y − z − A(x)B(y)
satisfies (G3) if and only if B is convex
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Proof of THM 1 (convexity of space U of utilities on X )

Given u0, u1 ∈ U and x0 ∈ X , since u0(·) = maxy∈Y G (·, y , v0(y))
there exists (y0, z0) ∈ Y × Z such that

u0(·) ≥ G (·, y0, z0) with equality at x0

Similarly
u1(·) ≥ G (·, y1, z1) with equality at x0

We’d like to deduce the same for 1
2 (u0 + u1).
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Adding the preceding yields

1

2
(u0 + u1)(·) ≥ 1

2
(G (·, y0, z0) + G (·, y1, z1))

≥ G (·, y 1
2
, z 1

2
)

by (G3), provided (y 1
2
, z 1

2
)

defined (using (G1-G2)) by

(DxG ,G )(x0, yt , zt) := (1− t)(DxG ,G )(x0, y0, z0) + t(DxG ,G )(x0, y1, z1)

Moreover, both inequalities are saturated at · = x0.

Thus 1
2 (u0 + u1) ∈ U .

Conversely. . .
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Proof of THM 2 (concavity of Π(u))

Proof: For ut := (1− t)u0 + tu1 ∈ U , we’ve assumed concavity (in t) of

π(x , ȳG ((1− t)Du0 + tDu1, (1− t)u0 + tu1, x)) (2)

Π(ut) :=

∫
X
π(x , ȳG (Dut(x), ut(x), x))dµ(x) (3)

inherits this concavity.

Conversely, if concavity of (2) fails for some t, x , u0 and u1, it also fails in
(3) for µ concentrated uniformly on a small enough ball around x .
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Differential condition for (G3)

When n = m set x̄ = (x0, x), ȳ = (y , z) and Ḡ (x̄ , ȳ) := x0G (x , y , z).

Assume
(G7) detD2

x̄ i ȳ j Ḡ (x̄ , ȳ) 6= 0 throughout {−1} × X × Y × Z

(G8) H(x , y , ·) = G−1(x , y , ·) also satisfies hypotheses (G1-G2)

THM 3: If G ∈ C 4 satisfies (G0-G2) and (G4-G8), then (G3) is equivalent
to

∂4

∂s2∂t2
Ḡ (x̄s , ȳt)

∣∣∣∣
(s,t)=(s0,t0)

≥ 0

holding along all C 2 curves x̄s and ȳt for which t ∈ [0, 1]→ (xs0 , ȳt) forms
a G -segment.

Remark: (G3) is a curvature condition on (−∞, 0)× X × Y × Z
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Pseudo-Riemannian geometry à la Kim-McCann ’10
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A new duality for bilinear preferences

Following Rochet-Choné ’98 choose G (x , y , z) = x · y − z and X ,Y ⊂ Rn

convex so

Π(u) =

∫
X

[x · Du − u(x)− c(Du(x))]dµ(x)

with

u(x) = v∗(x) := sup
y∈Y

x · y − v(y)

∈ U := {u : X −→ [0,∞] convex | Du(X ) ⊂ Y }

THM 3:

max
u∈U

Π(u) =

min
S∈S

∫
c∗(S(x))dµ(x)

where

S :=
⋂
u∈U

{
S : X −→ Rn |

∫
X

[(x − S(x)) · Du − u(x)]dµ(x) ≤ 0

}
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THM 3:

max
u∈U

Π(u) = min
S∈S

∫
c∗(S(x))dµ(x)

where

S :=
⋂
u∈U
{S : X −→ Rn | 〈x · Du(x)− u(x)〉µ ≤ 〈S(x) · Du(x)〉µ}

In words: the monopolists maximum profit coincides with the net value of
a co-op able to offer its members good y ∈ Y at price=cost c(y),
minimized over possible distributions S#µ of co-op memberships satisfying

the strange constraint that when members whose true type is S(x)
irrationally display the behaviour of x facing each monopolist price menu,
the expected gross value of the resulting assignment Du(x) to those co-op
members dominates the monopolist’s expected gross revenue
〈x · Du(x)− u(x)〉µ.

Proof sketch (≤): S ∈ S, u ∈ U and the definition of c∗ imply

Π(u) = 〈x · Du(x)− u − c(Du(x))〉µ ≤ 〈c∗ ◦ S〉µ
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the expected gross value of the resulting assignment Du(x) to those co-op
members dominates the monopolist’s expected gross revenue
〈x · Du(x)− u(x)〉µ.

Proof sketch (≤): S ∈ S, u ∈ U and the definition of c∗ imply

Π(u) = 〈x · Du(x)− u − c(Du(x))〉µ ≤ 〈c∗ ◦ S〉µ
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≥: Conversely, using a convex-concave saddle argument in (S , u)

sup
u∈U
〈x · Du(x)− u(x)− c(Du(x))〉µ

= sup
u∈U

inf
T :Y−→Rm

〈x · Du(x)− u(x)− T (Du(x)) · Du(x) + c∗(T (Du(x)))〉µ

≥ sup
u∈U

inf
S :X−→Rm

〈x · Du(x)− u(x)− S(x) · Du(x) + c∗(S(x))〉µ

= inf
S:X−→Rm

〈c∗(S(x))〉µ + sup
u∈U
〈x · Du(x)− u(x)− S(x) · Du(x))〉µ

= inf
S∈S
〈c∗ ◦ S〉µ.

(To justify this argument rigorously requires approximating both problems
before applying Fenchel-Rockafellar duality to obtain an
infinite-dimensional version of of the von Neumann min-max theorem.)
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Rochet-Choné’s square example revisited; c(y) = 1
2 |y |

2
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Variational calculus gives

u ∈ arg max
convex u≥0

∫
[a,a+1]2

[x · Du − u(x)− 1

2
|Du(x)|2]dµ(x)

u = ui on Ωi = {x | Rank(D2u(x)) = i} where

• on Ω0 exclusion: u0 = 0

• on Ω1, Euler-Lagrange ODE: if u1(x1, x2) = 1
2k(x1 + x2) then

k(s) = 3
4s

2 − as − log |s − 2a|+ const
subject to boundary conditions u1 = u0 and Du1 = Du0 at lower boundary.

• on Ω2 Euler-Lagrange PDE: ∆u2 = 3 subject to boundary conditions

(Du2(x)− x) · n̂Ω2(x) = 0 on ∂X ∩ Ω̄2

(Du2 − Du1) · n̂Ω2(x) = 0 on ∂Ω2 ∩ ∂Ω1 (Neumann)

u2 = u1 on ∂Ω2 ∩ ∂Ω1 (Dirichlet)

OVERDETERMINED!
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Free boundary problem

u = ui on Ωi where

• on Ω0 exclusion: u0 = 0

• on Ω0
1, Rochet-Choné’s ODE: u1(x1, x2) = 1

2k(x1 + x2) where
k(s) = 3

4s
2 − as − log |s − 2a|+ const

subject to boundary conditions k = 0 and k ′ = 0 at lower boundary.

• on Ω+
1 , u1 = u+

1 given by a NEW system of ODE (for height h(·) and
length R(·) of isochoice segments together with profile of u+

1 (·) along
them), with boundary conditions

u+
1 (x1, x2) = k(x1 + x2) and

Du+
1 = (k ′, k ′) on ∂Ω0

1 ∩ ∂Ω+
1

• on Ω2, PDE: ∆u2 = 3 with Rochet-Choné’s overdetermined conditions

(Du2(x)− x) · n̂Ω2(x) = 0 on ∂X ∩ Ω̄2 and on {x1 = x2}
(Du2 − Du+

1 ) · n̂Ω2(x) = 0 on ∂Ω2 ∩ ∂Ω+
1 (Neumann)

u2 = u+
1 on ∂Ω2 ∩ ∂Ω+

1 (Dirichlet)
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Precise Euler-Lagrange equation in the ‘missing’ region Ω+
1

Index each isochoice segment in Ω+
1 by its angle θ ≥ −π

4 to horizontal.
Let (a, h(θ)) denote its left-hand endpoint and parameterize the segment
by distance r ∈ [0,R(θ)] to (a, h(θ)). Along this segment of length R(θ),

u+
1

(
(a, h(θ)) + r(cos θ, sin θ)

)
= m(θ)r + b(θ).

For h ∈ [a, a+1], R : [−π
4
,
π

2
]→ [0, a

√
2) with R(−π

4
) =

1√
2

(h − a), solve

(m′′(θ) + m(θ)− 2R(θ))(m′(θ) sin θ−m(θ) cos θ+ a) =
3

2
R2(θ) cos θ (4)

m(−π
4 ) = 0, m′(−π

4 ) = 1√
2
k ′(a + h). Then set (5)

h(t) = h +
1

3

∫ t

−π/4
(m′′(θ) + m(θ)− 2R(θ))

dθ

cos θ
, (6)

b(t) =
1

2
k(a + h) +

∫ t

−π/4
(m′(θ) cos θ + m(θ) sin θ)h′(θ)dθ. (7)
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• for h ∈ [a, a + 1], R : [−π
4 ,

π
2 ]→ [0, a

√
2) Lipschitz (say) and

R(−π
4 ) = 1√

2
(h − a) we can solve (4)–(7) to find Ω+

1 and u1
+.

• we can then solve the resulting Neumann problem for ∆u2 = 3 on Ω2

• while it is not yet rigorously proved is that some choice of h and R(·)
also yields u1 − u2 = const on ∂Ω2 \ ∂X ,

we hope to do this in the future

• if a choice exists such that, absorbing the constant into u2, the resulting

u given by u
(±)
i on Ω

(±)
i for i ∈ {0, 1, 2} is in U , our new duality can be

used to certify that u is the desired optimizer

WHY DO WE EXPECT SUCH A CHOICE TO EXIST?

• a unique optimizer ū ∈ U is known to exist (Rochet-Choné) and
ū ∈ C 1,1

loc (X 0) (Caffarelli-Lions); if the sets Ωi where its Hessian is rank i
are smooth enough, and Ω1 has the expected 3 components, then (4)–(7)
and the overdetermined Poisson problem ∆u2 = 3 must be satisfied

• but maybe Ωi are not smooth enough, or Ω1 is not (simply) connected
and/or has more than three components (some too small for the numerics
to resolve); we seriously doubt this, but can’t rule it out rigorously yet...
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CONCLUSIONS

• Convexity, when present, is a powerful tool for optimization

• for numerics, uniqueness, stability, and characterization of optimum

• Duality of price menu v(y) with buyers’ indirect utilities u(x) = vG (x)

• Necessary and sufficient conditions for convexity of monopolist’s problem
(as a function of u)

• Related to curvature conditions governing regularity in generated
Jacobian equations (à la Ma, Trudinger and Wang) but

• adapted to payoffs G (x , y , z) which may depend nonlinearly on price z

• new duality certifying solutions for G (x , y , z) = x · y − z

• square example requires solving an unexpected free boundary problem

THANK YOU!

Robert J McCann (Toronto) On Concavity of the Monopolist’s Problem 21 April 2022 28 / 28



CONCLUSIONS

• Convexity, when present, is a powerful tool for optimization

• for numerics, uniqueness, stability, and characterization of optimum

• Duality of price menu v(y) with buyers’ indirect utilities u(x) = vG (x)

• Necessary and sufficient conditions for convexity of monopolist’s problem
(as a function of u)

• Related to curvature conditions governing regularity in generated
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