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Abstract. We describe our recent construction and classification
of rotationally symmetric ancient ‘pancake’ solutions to mean cur-
vature flow. The full details can be found in [5].

1. Introduction

A smooth one-parameter family {Mn
t }t∈I of smoothly immersed hy-

persurfaces Mn
t of Rn+1 is a (classical) solution to mean curvature flow

if there exists a smooth one parameter family X : Mn × I → Rn+1 of
immersions X(·, t) : Mn → Rn+1 with Mn

t = X(Mn, t) satisfying

∂X

∂t
(x, t) = ~H(x, t) for all (x, t) ∈Mn × I ,

where ~H(·, t) is the mean curvature vector field of X(·, t). The mean
curvature flow is the L2-gradient flow of the area functional and hence,
roughly speaking, deforms a hypersurface in such a way as to decrease
its area most rapidly.

An ancient solution to a geometric flow, such as mean curvature flow,
is one which is defined on a time interval of the form I = (−∞, T ),
where T ≤ ∞. Ancient solutions are of interest due to their natural role
in the study of high curvature regions of the flow; namely, they arise
as blow-up limits at singularities [10, 14, 15, 16, 17, 23, 24]. A special
class of ancient solutions are the translating solutions. As the name
suggests, these are solutions {Mn

t }t∈(−∞,∞) which evolve by translation:
Mn

t+s = Mn
t + se for some fixed vector e ∈ Rn+1.

Ancient solutions to mean curvature flow are also relevant in confor-
mal field theory, where, “to lowest order in perturbation theory, they
describe the ultraviolet regime of the boundary renormalization group
equation of Dirichlet sigma models” [4].

Further interest in ancient and translating solutions to geometric
flows arise from their rigidity properties, which are analogous to those
of complete minimal surfaces, harmonic maps and Einstein metrics; for
example, when n ≥ 2, under certain geometric conditions — uniform
convexity, bounded eccentricity, type-I curvature decay or bounded
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isoperimetric ratio, for instance — the only compact1, convex (or non-
collapsing) ancient solutions to mean curvature flow are shrinking spheres
[18, 11]. In fact, the convexity/noncollapsing condition can be weak-
ened to a uniform bound for |A|2/H2, where A is the second funda-
mental form of the solution [19].

Compact ancient solutions to mean curvature flow are closely related
to translating solutions. Consider a complete solution u : Ω → R,
Ω ⊂ Rn, to the pde

div

(
Du√

σ2 + |Du|2

)
= − 1√

σ2 + |Du|2
.(1)

When σ = 0, u is the arrival time of a mean convex ancient solution to
mean curvature flow in Rn (i.e. the level sets of u form a mean convex
ancient solution). When σ = 1, the graph of u is the time zero slice
of a mean convex translating solution to mean curvature flow in Rn+1

with bulk velocity −en+1. The converse is also true: Every compact,
mean convex ancient solution to mean curvature flow (resp. mean
convex, proper translating solution) gives rise to a complete solution
to (1) with σ = 0 (resp. σ = 1). This formal connection was exploited
by X.-J. Wang, who proved a series of remarkable results for convex
translating solutions and compact, convex ancient solutions to mean
curvature flow [22].

2. Ancient ovaloids vs ancient pancakes

Even under strong conditions such as convexity and compactness,
there are only a few situations in which a satisfying classification of
ancient solutions is known. For example, when the ambient space is
the Euclidean plane, R2, the only convex, compact ancient solutions
are (modulo rigid motions, time translations and paraboilic dilations)
the shrinking circle and the Angenent oval (a.k.a. the paperclip [4])
[9]. The Angenent oval is the family of curves {Λt}t<0 defined by Λt :=
{(x, y) ∈ R2 : cosx = et cosh y}.

When the ambient space is a round sphere, Sn+1, the situation is
particularly nice: there exists no analogue of the Angenent oval and,
indeed, the only geodesically convex, compact ancient solutions (in all
dimensions) are the ‘shrinking hemispheres’ [8, 18].

Observe that the shrinking circle is entire — it sweeps out all of
space (equivalently, its arrival time is an entire function) — whereas

1We refer to a solution {Mn
t }t∈I to mean curvature flow as compact, convex,

embedded, etc if this is the case for each time slice Mn
t .
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Figure 1. The Angenent oval solution to curve shortening flow.
It shrinks to a round point as t→ 0 and sweeps out a strip of width
π as t→ −∞.

the Angenent oval lies in the strip {(x, y) ∈ R2 : |x| < π
2
} at all times.

The following remarkable dichotomy was proved by X.-J. Wang [22].

Theorem 2.1 (X.-J. Wang’s dichotomy for ancient solutions [22]).
Every convex, compact ancient solution to mean curvature flow is either
entire (i.e. it sweeps out all of space) or lies at all times in a stationary
slab (the region bounded by two parallel hyperplanes).

We shall refer to a compact, convex ancient solution to mean curva-
ture flow as an ancient ovaloid if it is entire or an ancient pancake if
it lies in a slab.

In Euclidean ambient space of dimension n + 1 ≥ 3 the situation is
a great deal more subtle than the planar case. Indeed, it is now known
that there exist many compact, convex ancient solutions besides the
shrinking spheres. In particular, for each k ∈ {0, . . . , n − 1} there
exists an ancient ovaloid with O(k) × O(n + 1 − k)-symmetry which
contracts to a round point as t approaches zero but becomes more
eccentric as t approaches minus infinity, resembling a shrinking cylinder
Rk × Sn−k√

−2(n−k)t
in the ‘parabolic’ region and a convex, translating

solution in the ‘tip’ region. These solutions were discovered by White
[24] and constructed by Wang [22] and Haslhofer–Hershkovits [11].

Figure 2. An ancient ovaloid in R3. It shrinks to a round
point as t→ 0 and sweeps out all of space as t→ −∞, resembling
a shrinking cylinder in B√−2t.
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It is possible that the examples just described are the only ancient
ovaloids, at least when n = 2. Recently, Angenent, Daskalopoulos
and Šešum have proved that there is only one ancient ovaloid which
is uniformly two-convex and noncollapsing [2, 3]. It remains an in-
teresting open problem whether the ancient ovaloids are unique even
amongst O(k)×O(n+1−k)-symmetric solutions and it is not yet clear
whether ancient ovaloids necessary carry these symmetries. It is also
unclear whether or not ancient ovaloids are necessarily noncollapsing.
If so, the result of Angenent, Daskalopoulos and Šešum settles the issue
when n = 2.

The Angenent oval provides an example of an ancient pancake in R2.
As t goes to minus infinity, the Angenent oval tends to the boundary
of the strip, whereas, after translating one of its two points of maximal
displacement to the origin, it resembles the translating Grim Reaper
solution. In higher dimensions, Xu-Jia Wang has constructed ancient
pancakes in Rn+1 by taking a limit of solutions to the Dirichlet problem
for the level set flow [22].

Recently, we have provided a different construction of an O(1) ×
O(n)-invariant ancient pancake, including a precise description of its
asymptotics. Our methods are rather different from Wang’s.

Theorem 2.2 (Existence of ancient pancakes [5] (cf. [22])). There ex-
ists a compact, convex, O(1)×O(n)-invariant ancient solution {Mn

t }t∈(−∞,0)
to mean curvature flow in Rn+1 which lies in the stationary slab Σ :=
{x ∈ Rn+1 : |x1| < π

2
} and has the following properties.

(1 a) {λMλ−2t}t∈(−∞,0) converges uniformly in the smooth topology to
the shrinking sphere Sn√−2nt as λ→ 0,

(1 b) {Mt+s}t∈(−∞,−s) converges locally uniformly in the smooth topol-
ogy to the stationary solution ∂Σ as s→ −∞, and

(1 c) for any unit vector e ∈ {e1}⊥, {Mt+s − P (e, s)}t∈(−∞,−s) con-
verges locally uniformly in the smooth topology as s → −∞ to
the Grim hyperplane which translates with unit speed in the di-
rection e, where, given any v ∈ Sn, P (v, t) denotes the unique
point of Mn

t with outward pointing unit normal v.

Moreover, as t→ −∞,

(2 a) min
Mt

H = H(P (e1, t)) ≤ o
(

1
(−t)k

)
for any k > 0,

(2 b) min
p∈Mt

|p| = |P (e1, t)| ≥ π
2
− o

(
1

(−t)k

)
for any k > 0 and

(3 a) max
Mt

H = H(P (ϕ, t)) ≥
(

1 + n−1
−t + o

(
1

(−t)2−ε

))
for any unit

vector ϕ ∈ {e1}⊥ and any ε > 0, and
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(3 b) max
p∈Mt

|p| = |P (ϕ, t)| = −t + (n − 1) log(−t) + C + o(1) for any

unit vector ϕ ∈ {e1}⊥, where C ∈ R is some constant.

Figure 3. The rotationally symmetric ancient pancake. It
shrinks to a round point as t → 0 and sweeps out a slab of width
π as t→ −∞.

Existence of the solution is proved by evolving rotated timeslices
Λ−R of the Angenent oval and studying the evolution equation

∂tγR = −(κR + (n− 1)λR)νR

for the profile curve γR, where νR is the outward pointing unit normal
to γR, κR is its curvature and λR := − cos θR

y
, where θR is the angle

the tangent vector makes with the x-axis. Let us briefly sketch the
ideas involved. First, we apply the maximum principle to obtain a
Sturmian type lemma: The mean curvature HR = κR + (n − 1)λR
always has exactly four critical points along γR. The maximum occurs
when θR = 0 and the minimum when θR = π

2
(note that the double

reflection symmetry of Λ−R is preserved under the flow). The area AR
enclosed by γR satisfies

d

dt
AR =

∫
HR dsR =

∫
(κR+(n−1)λR) dsR = 2π+(n−1)

∫
λR
κR

dθR ,

where sR is the arc-length along γR. By Huisken’s theorem [13], γR
contracts to a point at the final time, which we take to be zero. So
integrating and applying the crude estimate 0 ≤ λR ≤ κR yields

−2πt ≤ AR(t) ≤ −2nπt .

Since the area enclosed by the initial curve, Λ−R, is AR(−TR) = 2πR,
this gives a uniform estimate for the time interval of existence [−TR, 0).
In particular, TR → ∞ as R → ∞. By the compactness theory
for mean curvature flow, it remains to obtain a uniform estimate for
HR

max(t) := maxHR(·, t) at each time. In fact, it suffices to bound
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HR
min(t) := minHR(·, t): By convexity, the maximal and minimal dis-

placements `R and hR, respectively, satisfy

2hR`R ≤ AR ≤ 4hR`R

and hence

(2) − πt ≤ 2hR`R ≤ −2nπt .

These are related to the largest and smallest curvatures by

dhR
dt

= −HR
min and

d`R
dt

= −HR
max .

So an upper bound for the speed HR
min implies a lower bound for the

displacement hR, which implies an upper bound for `R via (2). An
upper bound for Hmax can then be obtained from Hamilton’s Harnack
inequality [1, 10].

The required upper bound for HR
min follows from a simple geometric

argument (see Figure 4): Since HR
min occurs when θ = π

2
, it can be

shown that the circle tangent to γR at θ = π
2

(point p in Figure 4)
which passes through θ = 0 (point q in Figure 4) lies locally inside γR
at θ = π

2
. We conclude that

(3) HR
min ≤

2nhR
`2R + h2R

.

Figure 4. Bounding HR
min.
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So we have uniform speed and displacement bounds for γR at each
fixed time. Since TR → ∞ as R → ∞, we can extract a compact,
weakly convex ancient limit solution along a sequence Ri → ∞. In
fact, since the limit solution is compact, the splitting theorem for mean
curvature flow ensures that the limit is strictly convex.

The convergence to a ‘round point’ in item (1 a) is a consequence
of Huisken’s theorem [13] and well-known arguments show that the
‘parabolic’ region converges to the boundary of the slab, as in item
(1 b). With regards to item (1 c), well-known arguments also show
that the ‘edge’ region converges to a Grim hyperplane; however, it is
non-trivial to rule out limit Grim hyperplanes which are smaller than
the one asymptotic to the boundary of the slab. The key step is a
refined estimate for the enclosed area of the limit solution, which is
obtained by deriving a better estimate for the integral of λ. We then
argue that, if the limit Grim hyperplane is too thin, then the radius,
and hence enclosed area must actually be quite large, contradicting the
aforementioned area estimate.

The remaining asymptotics are obtained by a novel iteration argu-
ment which makes use of a refined version of the estimate (3) obtained
by varying the point B in Figure 4.

These asymptotics are actually derived for any compact, convex,
O(n)-invariant ancient solution contained in the slab Σ (and no smaller
slab). By applying an Alexandrov reflection argument, we are then able
to also obtain the following uniqueness result.

Theorem 2.3 (Uniqueness of the rotationally symmetric ancient pan-
cake [5]). Let {Mt}t∈(−∞,0) be a compact, convex, O(n)-invariant an-
cient solution of mean curvature flow in Rn+1 which lies in a slab
Σe,α := {x ∈ Rn+1 : |x · e| < α} for some e ∈ Sn and α > 0 and
in no smaller slab. Then, after a rigid motion and a parabolic rescal-
ing, {Mt}t∈(−∞,0) coincides with the solution constructed in Theorem
2.2.

Note that reflection symmetry across the midplane of the slab is not
assumed in Theorem 2.3. Moreover, by Wang’s dichotomy, it suffices
to assume that the solution only lies in a halfspace rather than a slab.

Note also that the arguments apply (and, indeed, are significantly
simplified) in case n = 1. Combined with Wang’s uniqueness re-
sult for the shrinking circle [22], this yields a nice new proof of the
Daskalopoulos–Hamilton–Šešum classification of compact, convex an-
cient solutions of the curve shortening flow [9] (see [6]).

Unlike the ancient ovaloids, ancient pancakes cannot possess O(k)×
O(n + 1 − k)-symmetry for any k > 1 since such a solution could be



8 THEODORA BOURNI, MAT LANGFORD, AND GIUSEPPE TINAGLIA

enclosed by a cylinder S1
R×Rn−1 for some sufficiently large R (uniformly

in time), contradicting the avoidance principle. So our result gives a
complete classification of doubly symmetric ancient pancakes.

3. Pancakes with discrete symmetry groups

There may exist non-rotationally symmetric ancient pancake solu-
tions and in order to construct and classify further examples, we have
also studied the existence and geometric properties of translators [7].

Inspired by the work of Shariyari [20] and Spruck–Xiao [21], we were
able to obtain a complete resolution to the existence question in all
dimensions.

Theorem 3.1 (Existence of convex translators in all admissible slabs
[7]). For every n ≥ 2 and every θ ∈ (0, π

2
) there exists a strictly convex

translator W n
θ which lies in

Σn+1
θ := {(x, y, z) ∈ R× Rn−1 × R : |x| < π

2
sec θ} ⊂ Rn+1

and in no smaller slab.

The ‘flying wing’ W 2
θ of [7] with θ = π

4 (right). The translation direction is

vertical.

Around the same time our work was completed, Hoffman, Ilmanen,
Mart̀ın and White provided an existence theorem for all slabs of width
greater than π in the case n = 2 [12, Theorem 1.1]. They were also able
to prove uniqueness in this case, thereby completing the classification
of translating graphs in R3. Finally, they gave a different construction
of examples of translating graphs in slabs in Rn+1, extending an earlier
construction of Ilmanen for the case n = 2 [12]. These solutions are
parametrized by the vector of principal curvatures at the ‘tip’ (the
unique point at which the downward unit normal is −en).

From our aforementioned study of the translators with O(1)×O(n−
1)-symmetry, the following conjecture appears natural.

Conjecture 3.2 (Dihedral pancakes). Given any k ≥ 3 there exists
an ancient pancake lying in the slab (−π

2
sec π

k
, π
2

sec π
k
)×R2 ⊂ R3 (and
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in no smaller slab) with symmetry group O(1) × Dk, where Dk is the
symmetry group of the regular k-sided polygon. Modulo translations and
rotations, this is the unique such solution. Let {φi}ki=1 ⊂ C ∼= {0}×R2

be the k-th roots of unity in the {x1 = 0} plane. Up to a rotation,
the solution has the following asymptotics: Given a unit vector φ ∈
{0} × R2, the asymptotic translator in the φ-direction is the oblique
Grim plane Γ2

π
k

, except when φ ∈ {φi}ki=1, in which case the asymptotic

translator is the flying wing translator W 2
π
k

.

Figure 5. Gluing three flying wing translators at infin-
ity to form a compact ancient solution.

When n = 2, it is concievable that these, along with the rotationally
symmetric one, are the only ancient pancakes.

Generalizing these principles leads to the following natural question.

Question 3.3. Do there exist ancient pancakes in Rn+1 with symmetry
groups O(1) × Gn, where Gn is the symmetry group of a regular n-
polytope?
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