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Abstract. We describe our recent construction of a new family
of translating solutions to mean curvature flow and discuss some
implications for the construction of new convex ancient solutions.
The full details appear in [7] and [8].

1. Introduction

A smooth one-parameter family {Mn
t }t∈I of smoothly immersed hy-

persurfaces Mn
t of Rn+1 is a (classical) solution to mean curvature flow

if there exists a smooth one parameter family X : Mn × I → Rn+1 of
immersions X(·, t) : Mn → Rn+1 with Mn

t = X(Mn, t) satisfying

∂X

∂t
(x, t) = ~H(x, t) for all (x, t) ∈Mn × I ,

where ~H(·, t) is the mean curvature vector field of X(·, t). The mean
curvature flow is the L2-gradient flow of the area functional and hence,
roughly speaking, deforms a hypersurface in such a way as to decrease
its area most rapidly.

An ancient solution to a geometric flow, such as mean curvature flow,
is one which is defined on a time interval of the form I = (−∞, T ),
where T ≤ ∞. A special class of ancient solutions are the translating
solutions. As the name suggests, these are solutions {Mn

t }t∈(−∞,∞)

which evolve by translation: Mn
t+s = Mn

t + se for some fixed vector
e ∈ Rn+1. The timeslices Mn

t of a translating solution {Mn
t }t∈(−∞,∞)

are all congruent and satisfy the translator equation, which asserts that
the mean curvature vector of Mn

t is equal to the projection of e onto its
normal bundle. Translating solutions arise as blow-up limits of type-II
singularities along an essential blow-up sequence [4, 5, 13, 24]. Type-II
singularities (and, more generally, translating solutions) are still not
very well understood, except in certain special cases [3, 6, 14, 17, 18,
19, 26, 28, 29]. More general blow-up sequences yield more general
ancient solutions. Understanding ancient and translating solutions is
therefore important to many applications of the flow which require a
controlled continuation of the flow through singularities.
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Further interest in ancient and translating solutions to geometric
flows arise from their rigidity properties, which are analogous to those
of complete minimal surfaces, harmonic maps and Einstein metrics; for
example, when n ≥ 2, under certain geometric conditions — uniform
convexity, bounded eccentricity, type-I curvature decay or bounded
isoperimetric ratio, for instance — the only compact1, convex (or non-
collapsing) ancient solutions to mean curvature flow are shrinking spheres
[20, 15]. In fact, the convexity/noncollapsing condition can be weak-
ened to a uniform bound for |A|2/H2, where A is the second funda-
mental form of the solution [21].

Compact ancient solutions to mean curvature flow are closely related
to translating solutions. Indeed, if {Mt}t∈(−∞,0) is a compact, convex
ancient solution and P (e, t) ∈Mt satisfies ν(P (e, t), t) = e ∈ Sn, then,
by the differential Harnack inequality [2, 13], the translated flow M s

t :=
Mt+s−P (e, s) converges (in the smooth topology, uniformly on compact
subsets) to a convex translating solution with velocity −H∞e, where
H∞ + lim

s→−∞
H(P (e, s), s)e.

2. Translators

As we mentioned in the introduction, a translating solution of mean
curvature flow is one which evolves purely by translation and, in that
case, the time slices are all congruent and satisfy

(1) H(x) = −〈ν(x), e〉
for some e ∈ Rn+1, where ν is a choice of local unit normal field near x
and H = div ν is the corresponding mean curvature. Since we are inter-
ested in the classification problem, it is useful to eliminate the scaling
invariance and isotropy of (1) by restricting attention to translating
solutions which move with unit speed in the ‘upwards’ direction. That
is, we henceforth assume that e = en+1. We will refer to a hypersurface
Mn ⊂ Rn+1 satisfying (1) with e = en+1 as a translator.

The most prominent example of a translator is the Grim Reaper
curve, Γ1 ⊂ R2, defined by

Γ1 :=
{

(x,− log cosx) : |x| < π
2

}
.

Taking products with lines then yields the Grim hyperplanes

Γn :=
{

(x1, . . . , xn,− log cosx1) : |x1| < π
2

}
.

1We refer to a solution {Mn
t }t∈I to mean curvature flow as compact, convex,

embedded, etc if this is the case for each time slice Mn
t .
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Figure 1. The Grim Reaper translating to the right under
curve shortening flow, killing every compact solution in its way
(by the avoidance principle).

The Grim hyperplane Γn lies in the slab {(x1, . . . , xn) : |x1| < π
2
} (and

in no smaller slab). More generally, if Mn−k is a translator in Rn−k+1

then Mn−k × Rk is a translator in Rn−k+1 × Rk ∼= Rn+1.
There is also a family of ‘oblique’ Grim planes Γnθ,φ parametrized by

(θ, φ) ∈ [0, π
2
) × Sn−2. These are obtained by rotating the ‘standard’

Grim plane Γn through the angle θ ∈ [0, π
2
) in the plane span{φ, en+1}

for some unit vector φ ∈ span{e2, . . . en} and then scaling by the factor
cos θ. To see that the result is indeed a translator, we need only check
that

−Hθ = − cos θH = cos θ 〈ν, en+1〉 = 〈cos θν + sin θφ, en+1〉 = 〈νθ, en+1〉 ,

where Hθ and νθ are the mean curvature and unit normal to Γnθ,φ re-
spectively. We also set Γnθ := Γnθ,e2 .

Figure 2. The oblique Grim plane Γ2
θ with θ = π/6. The

translation direction is vertical.
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The oblique Grim hyperplane Γnθ,φ lies in the slab

Σn+1
θ := {(x1, . . . , xn+1) : |x1| < π

2
sec θ}

(and in no smaller slab). More generally, if Mn−k is a translator in
Rn−k+1 then the hypersurface Mn

θ,φ obtained by rotating Mn−k × Rk

counterclockwise through angle θ in the plane φ∧en+1 and then scaling
by sec θ is a translator in Rn+1, so long as φ is a non-zero vector in
span{en−k+1, . . . en}.

For each n ≥ 2, Altschuler and Wu constructed an O(n)-invariant,
convex, entire translating graph in Rn+1 asymptotic to a paraboloid
[1] (see also [11]). X.-J. Wang proved that this solution is the only
convex entire translator in R3 and constructed further convex entire
examples in higher dimensions [28]. He also proved the existence of
strictly convex translating solutions which lie in slab regions in Rn+1

for all n ≥ 2 and showed that these are the only possibilities:

Theorem 2.1 (X.-J. Wang’s dichotomy for translators [28]). Every
proper, convex translator is either entire or lies in a slab region.

A major difficulty in the construction of solutions to the transla-
tor equation is to obtain curvature estimates for the Dirichlet prob-
lem for the graphical translator equation (note that convexity is not
guaranteed). Wang sidesteps this problem by exploiting the Legendre
transform and the existence of convex solutions of certain fully non-
linear equations. Unfortunately, this method loses track of the precise
geometry of the domain on which the solution is defined and so it re-
mained unclear exactly which slabs admit translators. On the other
hand, there can exist no strictly convex translator in a slab of width
less than or equal to π (the Grim hyperplane is a barrier).

Shariyari [25] and Spruck–Xiao [27] obtained curvature estimates for
graphical translators in R3 by exploiting their stability properties (cf.
[10]). Using their curvature estimates, Spruck and Xiao were then
able to deduce that every mean convex translator in R3 is actually
weakly convex [27, Theorem 1.1]. Inspired by their work, we were
able to obtain a complete resolution to the existence question in all
dimensions.

Theorem 2.2 (Existence of convex translators in all admissible slabs
[8]). For every n ≥ 2 and every θ ∈ (0, π

2
) there exists a strictly convex

translator W n
θ which lies in

Σn+1
θ := {(x, y, z) ∈ R× Rn−1 × R : |x| < π

2
sec θ} ⊂ Rn+1

and in no smaller slab.
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Around the same time our work was completed, Hoffman, Ilmanen,
Mart̀ın and White provided an existence theorem for all slabs of width
greater than π in the case n = 2 [16, Theorem 1.1]. They were also able
to prove uniqueness in this case, thereby completing the classification
of translating graphs in R3. Finally, they gave a different construction
of examples of translating graphs in slabs in Rn+1, extending an earlier
construction of Ilmanen for the case n = 2 [16]. These solutions are
parametrized by the vector of principal curvatures at the ‘tip’ (the
unique point at which the downward unit normal is −en).

Let us briefly sketch the proof of Theorem 2.2. The idea is to take
a limit of solutions to an appropriate sequence of Dirichlet problems.
Since translators automatically satisfy H ≤ 1, general methods of geo-
metric measure theory can be used to obtain curvature estimates when
n ≤ 6. In order to obtain curvature estimates in higher dimensions,
one needs to rule out singular (minimal) tangent cones. This can be
achieved using the rotational symmetry hypothesis [9, 22, 23].

Proposition 2.3 (Curvature estimates up to the boundary for trans-
lating graphs [8]). Given any K > 0 and ` ∈ N, there exists a constant
C` <∞ with the following property: Let u be a solution to

div

(
Du√

1 + |Du|2

)
=

1√
1 + |Du|2

in Ω

u = ψ on ∂Ω ,

with ∂Ω and ψ bounded in C`0,α by K for some `0 ≥ 2 and α ∈
(0, 1] (and rotationally symmetric with respect to the subspace En−1 :=
span{e2, . . . , en} if n ≥ 7). Then

sup
p∈graphu

|∇`A(p)| ≤ C` for all ` ∈ {0, . . . , `0 − 2} ,

where A is the second fundamental form of graphu and ∇0A := A.

Remark 2.4. In case `0 = 1 we obtain uniform estimates in C1,α.

We emphasize that the estimates of Proposition 2.3 hold all the way
to the boundary of Ω. This will be needed later.

We are then able to extend the convexity estimate of Spruck and
Xiao to higher dimensions under the rotational symmetry hypothesis.

Proposition 2.5. Let M ⊂ Rn+1 be a mean convex translator with at
most two distinct principal curvatures at each point and bounded norm
of the second fundamental form. Then M is convex.

In order to obtain the solution as a limit of solutions to Dirichlet
problems, it then remains to obtain height estimates (to ensure that
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the limit is complete) and to rule out a ‘width-drop’ in the limit. We
achieve this by constructing appropriate barriers: The function u :
{(x, y) ∈ R× Rn−1 : |x| < π

2
sec θ} → R defined by

u(x, y) := − sec2 θ log cos
(

x
sec θ

)
+ tan2 θ log cosh

(
|y|

tan θ

)
is a subsolution to the graphical translator equation. It was discovered
by modifying the arrival time of the Angenent oval so that it lies in the
correct slab and is asymptotic to the correct oblique Grim hyperplanes.

A suitable supersolution is obtained by rotating the Angenent oval
of width π sec θ and cutting off at an appropriate height (see Figure 3).

Figure 3. Given any ε ∈ (0, ε0(n, θ)), the portion of the rotated
time T = sec2 θ cosh

(
R

tan θ

)
slice of the Angenent oval of width

π sec θ lying below height z = −R cos(θ−ε)
sin θ is a supersolution of the

translator equation when R > Rε := 2(n−1)
ε .

Given R > 0, set

uR := u− tan2 θ log cosh
(

R
tan θ

)
and let uR be the solution todiv

(
DuR√

1 + |DuR|2

)
=

1√
1 + |DuR|2

in ΩR

uR = 0 on ∂ΩR ,

where ΩR is the set of points where uR < 0. Since the equation ad-
mits upper and lower barriers (0 and uR, respectively), existence and
uniqueness of a smooth solution follows from well-known methods (see,
for example, [12, Chapter 15]). Uniqueness implies that uR is rotation-
ally symmetric with respect to the subspace En−1 = span{e2, . . . , en}.
Since uR is a subsolution, its graph lies below graphuR. Since the
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two surfaces coincide on the boundary ∂ΩR, the mean curvature HR of
graphuR satisfies

HR = −〈νR, en+1〉 ≥ − 〈νR, en+1〉
≥ cos θ cos (x cos θ)

≥ cos θ

(
1− x

π
2

sec θ

)
(2)

on ∂ΩR, where νR is the downward pointing unit normal to graphuR.
On the other hand, using the ancient pancake as an upper barrier yields

−uR(0) &
1− cos θ

sin θ
R→∞ as R→∞ .(3)

Let Ri → ∞ be a diverging sequence and consider the translators-
with-boundary

Mi := graphuRi − uRi(0)en+1 .

By Proposition 2.3 and the height estimate (3), some subsequence con-
verges locally uniformly in the smooth topology to some limiting trans-
lator, M , with bounded second fundamental form. By Proposition 2.5,
M is convex.

Certainly M lies in the slab Σn+1
θ , so it remains only to prove that

it lies in no smaller slab (strict convexity will then follow from the
splitting theorem and uniqueness of the Grim Reaper). Set

v := 1− x
π
2

sec θ
,

where x(X) := 〈X, e1〉. We claim that

(4) inf
M∩{x>0}

H

v
> 0 .

Since infM H = 0, we conclude that supM x = π
2

sec θ as desired. To
prove (4), first observe that

−(∆ +∇V )v = 0

and hence

−(∆ +∇V )
H

v
= |A|2H

v
+ 2

〈
∇H
v
,
∇v
v

〉
,
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where V is the tangential projection of en+1. The maximum principle
then yields

min
Mi∩{x>0}

H

v
≥ min

{
min

∂Mi∩{x>0}

H

v
, min
Mi∩{x=0}

H

v

}
= min

{
cos θ, min

Mi∩{x=0}
H

}
.

If lim infi→∞minMi∩{x=0}H > 0 then we are done. So suppose that
lim infi→∞H(Xi) = 0 along some sequence of points Xi ∈ Mi ∩ {x =
0}. Then, by Proposition 2.3, after passing to a subsequence, the
translators-with-boundary

M̂i := Mi −Xi

converge locally uniformly in C∞ to a translator (possibly with bound-

ary) M̂ which lies in the slab Σn+1
θ and satisfies H ≥ 0 with equality

at the origin. By Proposition 2.3 the origin must be an interior point
since, recalling (2), H > cos θ on ∂Mi ∩ {x = 0} for all i. The strong

maximum principle then implies that H ≡ 0 on M̂ and we conclude
that M̂ is either a hyperplane or half-hyperplane. Since, by the reflec-
tion symmetry, the limit cannot be parallel to {0}×Rn−1×R, neither

option can be reconciled with the fact that M̂ lies in Σn+1
θ . This proves

that the width cannot drop in the limit, and with it Theorem 2.2.
As was the case for ancient pancakes, these solutions necessarily

converge to oblique Grim hyperplanes (of width potentially smaller
than that of the original slab) after translation parallel to the slab.
The following theorem shows that the asymptotic Grim hyperplanes
are of full width.

Theorem 2.6 (Unique asymptotics and reflection symmetry [27, 8]).
Given n ≥ 2 and θ ∈ (0, π

2
) let Mn

θ be a convex translator which lies

in the slab Σn+1
θ and in no smaller slab. If n ≥ 3, assume in ad-

dition that Mn
θ is rotationally symmetric with respect to the subspace

En−1 := span{e2, . . . , en}. Given any unit vector e ∈ En−1, the curve
{sinωe − cosωen+1 : ω ∈ [0, θ)} lies in the normal image of Mn

θ and
the translators

Mn
θ,ω := Mn

θ − P (sinωe− cosωen+1)

converge locally uniformly in the smooth topology to the oblique Grim
hyperplane Γnθ,e as ω → θ, where P : Sn → Mn

e is the inverse of the
Gauss map.

Moreover, Mn
θ is reflection symmetric across the hyperplane {0} ×

Rn.
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This result was already obtained by Spruck and Xiao when n = 2
using different methods [27]. Note that the translators we construct in
Theorem 2.2 satisfy the hypotheses of Theorem 2.6.

It would be useful to have a better understanding of the location
of the point P (sinωe − cosωen+1). For example, it remains unclear
whether or not the ‘flying wing’ solution constructed in [8] lies above
a (translated) oblique Grim hyperplane Γnθ − Cen+1. This information
will be of use in constructing new examples of ancient and translating
solutions.

The ‘flying wing’ W 2
θ of [8] with θ = π

4 (right). The translation direction is

vertical.

The rotational symmetry hypothesis — which is not required when
n = 2 — may be necessary in higher dimensions. We note that, in
higher dimensions, ‘oblique’ products of lower dimensional wing fam-
ilies with flat directions provide additional possible asymptotics for
higher dimensional translators, so the description of higher dimensional
translators is therefore to be far more complex. It is conceivable that
there exist convex translators in the slab Σ4

θ ⊂ R4, for example, which
are asymptotic to an ‘oblique’ M2

θ ×R, where M2
θ ⊂ R3 is the translator

from Theorem 3.1.

3. Ancient solutions with discrete symmetry groups

The Angenent oval provides an example of a compact, convex ancient
solution to mean curvature flow that lies on a slab.

Figure 4. The Angenent oval solution to curve shortening flow.
It shrinks to a round point as t→ 0 and sweeps out a strip of width
π as t→ −∞.
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We shall refer to an ancient solution that satisfies these hypotheses
as an ancient pancake. In higher dimensions, Xu-Jia Wang has con-
structed ancient pancakes in Rn+1 by taking a limit of solutions to the
Dirichlet problem for the level set flow [28].

Recently, we have provided a different construction of an O(1) ×
O(n)-invariant ancient pancake, including a precise description of its
asymptotics using methods that are rather different from Wang’s.

Theorem 3.1 (Existence of ancient pancakes [7] (cf. [28])). There ex-
ists a compact, convex, O(1)×O(n)-invariant ancient solution {Mn

t }t∈(−∞,0)
to mean curvature flow in Rn+1 which lies in the stationary slab Σ :=
{x ∈ Rn+1 : |x1| < π

2
} and has the following properties.

(1 a) {λMλ−2t}t∈(−∞,0) converges uniformly in the smooth topology to
the shrinking sphere Sn√−2nt as λ→ 0,

(1 b) {Mt+s}t∈(−∞,−s) converges locally uniformly in the smooth topol-
ogy to the stationary solution ∂Σ as s→ −∞, and

(1 c) for any unit vector e ∈ {e1}⊥, {Mt+s − P (e, s)}t∈(−∞,−s) con-
verges locally uniformly in the smooth topology as s → −∞ to
the Grim hyperplane (see §2) which translates with unit speed
in the direction e, where, given any v ∈ Sn, P (v, t) denotes the
unique point of Mn

t with outward pointing unit normal v.

Moreover, as t→ −∞,

(2 a) min
Mt

H = H(P (e1, t)) ≤ o
(

1
(−t)k

)
for any k > 0,

(2 b) min
p∈Mt

|p| = |P (e1, t)| ≥ π
2
− o

(
1

(−t)k

)
for any k > 0 and

(3 a) max
Mt

H = H(P (ϕ, t)) ≥
(

1 + n−1
−t + o

(
1

(−t)2−ε

))
for any unit

vector ϕ ∈ {e1}⊥ and any ε > 0, and
(3 b) max

p∈Mt

|p| = |P (ϕ, t)| = −t + (n − 1) log(−t) + C + o(1) for any

unit vector ϕ ∈ {e1}⊥, where C ∈ R is some constant.

One of our motivations for studying translators lying in slab regions
is to study ancient pancake solutions which are not necessarily rota-
tionally symmetric. Based on the description of the translators with
O(1) × O(n − 1)-symmetry contained in the previous section, the fol-
lowing conjecture appears natural.

Conjecture 3.2 (Dihedral pancakes). Given any k ≥ 3 there exists
an ancient pancake lying in the slab (−π

2
sec π

k
, π
2

sec π
k
)×R2 ⊂ R3 (and

in no smaller slab) with symmetry group O(1) × Dk, where Dk is the
symmetry group of the regular k-sided polygon. Modulo translations and
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Figure 5. The rotationally symmetric ancient pancake. It
shrinks to a round point as t → 0 and sweeps out a slab of width
π as t→ −∞.

rotations, this is the unique such solution. Let {φi}ki=1 ⊂ C ∼= {0}×R2

be the k-th roots of unity in the {x1 = 0} plane. Up to a rotation,
the solution has the following asymptotics: Given a unit vector φ ∈
{0} × R2, the asymptotic translator in the φ-direction is the oblique
Grim plane Γ2

π
k

, except when φ ∈ {φi}ki=1, in which case the asymptotic

translator is the flying wing translator W 2
π
k

.

Figure 6. Gluing three flying wing translators at infin-
ity to form a compact ancient solution.

Generalizing these principles leads to the following natural question.

Question 3.3. Do there exist translators contained in slab regions of
Rn+1 with symmetry groups O(1)×Gn−1, where Gn−1 is the symmetry
group of a regular (n− 1)-polytope?
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