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Abstract

A 1910 theorem of Brouwer characterizes the Cantor set as the unique totally discon-
nected, compact metric space without isolated points. A 1920 theorem of Sierpinski
characterizes the rationals as the unique countable metric space without isolated points.
The purpose of this exposition is to give an accessible overview of this celebrated pair
of uniqueness results. It is illuminating to treat the problems simultaneously because
of commonalities in their proofs. Some of the more counterintuitive implications of
these results are explored through examples. Additionally, near-examples are provided
which thwart various attempts to relax hypotheses.
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1 Introduction

The problem of characterizing spaces of real numbers topologically is an old and pro-
ductive one. In 1928, Alexandroff & Urysohn characterized the irrationals as the
unique separable, completely metrizable, zero-dimensional space for which every com-
pact subset has empty interior [I]. In 1936, Ward characterized the real line as the
unique connected, locally connected, separable, metrizable space for which the removal
of any point results in precisely two connected components [8]. In 1970, Franklin &
Krishnarao improved Ward’s result by weakening metrizable to regular [5], thereby
removing implicit mention of the reals from the characterization. As stated in the
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abstract, our interest is in two other results from this family. To wit, Brouwer’s char-
acterization of the Cantor set [3], and Sierpinski’s characterization of the rationals [6].
Our proof of Sierinski’s theorem is modeled on one given in [4].

First, we standardize some notation and terminology. Except where otherwise stated,
all sets of real numbers are assumed to carry the subspace topology inherited from the
usual topology on R. We denote by C the standard “middle thirds” set of Cantor,
and by F the countable, dense subset of C consisting of endpoints of intervals deleted
during the construction of C, along with 0 and 1. Denote by N the set of positive
integers and by 2 the (discrete) 2-point space {0,1}. It is standard that the product
topology on the space 2N of infinite binary sequences is homeomorphic to C (the natural
homeomorphism is the one sending (b;) € 2N to > 52, 23—5? € (). Since the 2-point
discrete space has a natural topological group structure (that of Z/27Z) the identification
C = 2N shows that C' has the structure of an uncountable (abelian) topological group.
In particular, this shows C' has many self homeomorphisms - a point which will later be
of use. The separation axioms reqular and normal are taken to include the Hausdorff
condition, by definition. The word countable is taken to mean countably infinite.

The overarching goal is to prove the following theorems which characterize C' and Q

uniquely up to homeomorphism.

Theorem 1 (Brouwer). Every nonempty, totally disconnected, compact, metrizable
space without isolated points is homeomorphic to the Cantor set C.

Theorem 2 (Sierpiniski). Every countable, metrizable space without isolated points is
homeomorphic to the rational numbers Q.

Some applications of these results are given in Examples [l and 2] below.
Example 1.

(a) Any nonempty perfect subset of C' is homeomorphic to C.

(b) Extending (a), a nonempty subset of R is homeomorphic to C if and only if it is
perfect, nowhere dense and compact.

(c) The products spaces C%,C3,... and CN are homeomorphic to C.

(d) If Xy,Xs,... are totally disconnected, compact, metrizable spaces (e.g. finite
discrete spaces) with at least 2 points, then [[:;2, X; is homeomorphic to C.

Part (d) holds because total disconnectedness and compactness are preserved under ar-
bitrary products, metrizability is preserved under countable products, and the product
of an infinite family of spaces with at least 2 points has no isolated point.

Example 2.

(a) Any countable, dense subset of R is homeomorphic to Q (already for spaces as
simple as Q\ {0} or QU {\/2} this is not completely obvious).

(b) The endpoints E of the Cantor set are homeomorphic to Q.



(¢) Eztending (a), a countable dense subset of any Fuclidean n-space is homeomor-
phic to Q. In particular, the product spaces Q,Q3, ... are homeomorphic to Q.

(d) The “Sorgenfrey” topology on Q generated by half-open intervals [a,b)NQ is home-
omorphic to the standard one (metrizability is most easily seen through Urysohn’s
metrization theorem).

The spaces in Part (a) above are more basic in the sense that it will in fact be possible
to find an order preserving homeomorphism with Q for these spaces. In Part (b), this
cannot be so because the order type of E is very different from that of Q (every left
endpoint is the immediate predecessor of a right endpoint). Thus, an order preserving
homeomorphism is too much to hope for in general. This concession paves the way
for the intuition-testing examples in Part (c). Here, it is far from apparent that there
should be any order structure whatsoever compatible with the topology. Part (d) may
be the most perverse example of the lot; the Sorgenfrey topology on Q is strictly finer
topology than the standard topology while, at the same time, homeomorphic to the
standard topology.

An order preserving homeomorphism between two subsets of R will be called an order
homeomorphism. Our general outline for proving Brouwer’s theorem and Sierpinski’s
theorem is the same:

1. Identify the subsets of R that are order-homeomorphic to C' and Q respectively.

2. Given X as in Brouwer’s theorem or Sierpinski’s theorem, construct an embedding
of X into R whose range is one of the above sets.

2 The Ordered Perspective

In this paper, we commit a mild travesty by only considering suborders of R. When
X C R, there is a second natural topology on X, besides the subspace topology. This
is the order topology on X. The sets

(a,)NX [,0)NX (a,r]NX

where ¢ and r are the largest and smallest elements of X (if indeed such exist) and
a,b € X satisfy £ < a < b < r are a basis for the order topology. Note that an order
isomorphism between X, Y C R is also a homeomorphism of their order topologies since
basic sets will be sent to basic sets. The subspace topology on X C R is always finer
than the order topology and, in many familiar instances, the distinction is irrelevant.
This is the case for C' and Q (if the former is not clear now, it will be made clear soon).
It is an inconvenient fact of life that the subspace topology can be strictly finer. For
example, there is a clear order isomorphism between the spaces

X =[0,1)U{2} U(3,4] and Y = [0, 2]



so their order topologies are homeomorphic. However, their subspace topologies are
not homeomorphic since X has an isolated point and Y does not. We will record an
easy, but highly checkable, necessary and sufficient condition for these topologies to
agree. It seems useful and appropriate to phrase this condition, and two others that
will become relevant, in a common language.

By a gap in X we mean a bounded connected component of R\ X. We refine this
notion. Every bounded, connected subset of R has precisely one of the following forms

(a,b) [a,b] {a} [a,b) (a,b],
——

open closed half-open

so we may classify gaps disjointly as follows: an open gap is an essential gap (X contains
both endpoints), a closed gap is a Dedekind gap (X contains neither endpoint), a half-
open gap is a pseudo-gap (X contains one endpoint and not the other). For example

X =([0,1]NQ)U[2,3] U (4,5) U (5,6] U[7,00)

has 2 essential gaps, many +1 Dedekind gaps and 1 pseudo-gap. The first two flavors
of gaps are intrinsic to the order on X. The essential gaps in X are in one to one
correspondence with pairs (x,y) of points in X where z is an immediate predecessor
of y (so y is the immediate successor of ). The Dedekind gaps in X are in one to one
correspondence with the Dedekind cuts in X, where a Dedekind cut in X is defined as
a pair (L, U) of nonempty subsets of X such that LUU = X, L < U, L has no largest
element, and U has no smallest element. In contrast, however, pseudo-gaps, are not
detected by the order on X and, when present, indicate that the way X sits in R is
somehow defective. Their importance stems from the following easy result.

Proposition 1. The order topology on X C R agrees with the subspace topology if and
only if X has no pseudo-gaps.

Note that a closed subset of R can only have essential gaps (it must contain both
endpoints of any gap). In particular, this shows the order topology and subspace
topologies on C' are the same.

Essential gaps, on the other hand, are important to us because of their role they play
in the following classical, order theoretic analog of Sierpinski’s theorem - originally due
to Cantor [3].

Theorem 3 (Cantor). If A, B C R are countable, have no essential gap, and have
neither largest nor smallest elements (these conditions mean, for instance that, when
a,a’ € A, a < d, we can find x,y,z € A such that x < a <y < a < z), then A, B are
order isomorphic. In particular, both are order isomorphic to Q.

Proof. First we fix enumerations of A and B. It simplifies matters to index the
elements of A with odd numbers and the elements of B with even numbers. So,

Tt is standard to call a linear order with no essential gaps dense, but this conflicts with the meaning of
dense in topology so we avoid this usage here.



A = {ay,as3,as,...} while B = {by,by,bg,...}. Let .Z be the collection of partially
defined, order preserving maps A — B with finite domain. The plan is to build up
an order isomorphism through a countable sequence of extensions 1, 9, 3,... € ZF.
Moreover, we choose our extensions so that

a1 € domy; bo € rangps a3z € domps by € ranyy

which ensures the map defined “in the limit” is defined on all of A and hits all of
B. This is sometimes called a “back-and-forth” construction. This process can always
continue because of the following.

Claim. If ¢ € . and a € A, then there is an order preserving extension ¢* of ¢ with
domp* = dompU{a}. If ¢ € .F and b € B, then there is an order preserving extension
©* of ¢ with ranp* = ranp U {b}.

We prove only the first statement. If a € domp already, then do nothing. If ¢ < dome,
then we use the assumption that B has no smallest element to produce b € B with
b < rany (note rany is finite) and define ¢*(a) = b. We proceed similarly when
a > domyp. Otherwise, a has an immediate predecessor a~ and an immediate successor
a’ in domyp (since dome is finite). Since p(a™) < ¢(a™t) and B has no essential gaps,
there is a b € B with p(a™) < b < p(a™) and we set ¢*(z) = b. In all of the above
cases, the map ¢* so obtained is an extension of the desired type. O

We now identify the subsets of R which are order-homeomorphic to Q (i.e. homeomor-
phic to Q via. an order preserving homeomorphism). Let X C R. We say p € Ris a
left limit point of X, if it is a limit point of (—oo,p) N X. A right limit point of X is
defined similarly. If p is both a left limit point and a right limit point of X, then we
say that p is a 2-sided limit point of X.

Theorem 4 (Ordered version of Sierpinski’s theorem). A4 set X C R is order-homeomorphic
to Q if and only if X is countable and every x € X is a 2-sided limit point of X.

Proof. Only the “if” part of the statement is nontrivial. Suppose X is countable and
each point of X is a 2-sided limit point of X. No z € X can be the left endpoint
of a gap in X or a largest element of X, or else x is not a right limit point of X.
Similarly, no x € X can be a the right endpoint of a gap in X or a smallest element of
X, or else x is not a left limit point if X. It follows that X has no largest or smallest
element, no essential gaps, and no pseudo-gaps. By Cantor’s theorem, there is an order
isomorphism ¢ : X — Q which is homeomorphism from the the order topology on X to
Q. However, since X has no pseudo-gaps, Theorem [Ilshows ¢ is also a homeomorphism
from the subspace topology on X to Q. O

Before we can prove an analogous result for C', we will need to our attention to Dedekind
gaps. We say that X C R is Dedekind complete if it has no Dedekind gaps. As was
previously observed, a closed subset of R can have only essential gaps. Thus, closed
subsets of R are Dedekind complete. It turns out that any linear order embeds into
a certain essentially unique Dedekind complete linear order which could be called its
Dedekind completion (the construction just mimics the construction of the reals using

5



Dedekind cuts in Q). We stop short of defining a Dedekind completion precisely, or
proving it always exists. However, we will use the following result - a special case of
uniqueness for Dedekind completions.

Proposition 2. Suppose A C X C R, X is Dedekind complete, and each point in
X \ A is a 2-sided limit point of A. Suppose B C'Y C R, Y is Dedekind complete,
and each point in Y \ B is a 2-sided limit point of B. Then any order isomorphism
@ : A — B has a unique extension to an order isomorphism ¢* : X =Y.

Proof. Let x € X\ A. Let L={y €Y : y < ¢(a) for some a € A with a < z} and
U={yeY :y > p(a) for some a € A with a > x}. Since z is a 2-sided limit point
of A and since ¢ is order preserving, it follows that L and U are nonempty, L < U, L
has no largest element, and U has no smallest element. Since Y is Dedekind complete,
(L,U) cannot be a Dedekind cut in Y and there exists y € Y satisfying L < y < U.
In fact, the y must be unique since if y1,y2 have L < y; < yo < U, then yo is not
a left limit point of B. Clearly we are forced to define ¢*(x) = y if the extension is
to be order preserving. The map ¢* obtained by carrying out this argument at each
x € X \ A is an order preserving injection ¢* : X — Y extending ¢. The proof that

*

©* is onto proceeds similarly by fixing a y € Y\ B. O

Now we identify the subsets of R which are order-homeomorphic to C.

Theorem 5 (Ordered version of Brouwer’s theorem). A nonempty set X C R is order-
homeomorphic to C if and only if X is perfect, nowhere dense and compact.

Proof. Only the “if” part of the statement is nontrivial. Let X be as above. Since
X is closed, it has only essential gaps. Let L, R C X be, respectively, the set of left
endpoints and the set of right endpoints of essential gaps in X. Note that LN R =&
since X has no isolated points.

First we show L is order-homeomorphic to Q by applying Cantor’s theorem. Consider
the left endpoint ¢ of some essential gap (¢,7) in X. It must be that £ is a left limit of
X (or else it is isolated, but X is perfect). Whenever x € X and x < ¢, there must be
an essential gap in X between = and ¢ (or else X has nonempty interior, contradicting
nowhere denseness) so there is a ¢~ € L with x < £~ < . From these observations, it
follows that ¢ is not a smallest element of L and has no immediate successor. Similarly,
r is a right limit point of X, and, if z € X and ¢ < r < z, there is an /T € L with
x <r <" < x. From this it follows that ¢ is not a largest element of of L and that ¢
has no immediate predecessor. From Cantor’s theorem, it follows it now follows that
L is order isomorphic to Q as claimed.

There is a natural order isomorphism between L and R by pairing the left and right
endpoint of each essential gap. In fact, L U R is order isomorphic to L x {0,1} =
Q x {0,1} in the dictionary order (adding the elements of R amounts to adjoining an
immediate successor to each element of L). Let a = inf X and b = sup X. Since X is
compact, a,b € X. Let Ex = LU RU{a,b} C X. Clearly the order type of Ex is
just Q x {0, 1} with a largest and smallest element adjoined. In particular, there is an
order isomorphism ¢ : Ex — FE.



We claim any point x € X \ Ex is a 2-sided limit point of Ex. Such an z is at least a
2-sided limit point of X (since it is not the largest element, not the smallest element,
and not an endpoint of a gap). Moreover, if y € X and y # z, then there is a gap
in X between z and y (since X has empty interior). Thus, there are points of Ex
between x and y, and it follows that x is a 2-sided limit point of E'x too. But now,
Proposition 2 applies, and ¢ extends uniquely to an order isomorphism ¢* : X — FE.
Naively, need just be a homeomorphism of the order topologies on X and C but, since
X, C are closed, these are the same as the subspace topologies and we have our desired
order-homeomorphism. O

We have now completed step one from our outline in the introduction. As was observed
in Example [l the subsets of R which satisfy the hypotheses of Brouwer’s theorem
are precisely the sets appearing in Theorem abov Revisiting the aforementioned
outline, it is now apparent that proving Brouwer’s theorem is a slightly less delicate
business than we originally supposed. Any embedding at all that we construct for Step
2 will hit a set of the desired type.

3 Embeddings of Zero-Dimensional Spaces

If we are to have any hope of completing Step 2 from our outline, we will need techniques
for embedding spaces into R. Typical embedding theorems in general topology take
a family f; : X — Y; of continuous functions on a space X and use them as the
coordinate functions of a map from X into the product space [[, Y;. For this reason, it
tends to be easier to construct embeddings when the target space is a large topological
product. Although R is not itself of this form, it has a subspace of this form - namely
C = 2N, From this point of view, looking specifically at embeddings into C' C R is quite
a natural thing to try. To clarify what follows, we state an amusing and somewhat
neglected criterion for map to be an embedding. The trivial proof is left to the reader.

Lemma 1. A continuous function f : X = Y with X a Ty space is an embedding if
and only if p & S implies f(p) & f(S) forallp e X, S C X.

We say an indexed family f; : X — Y}, i € I of continuous functions separates points
from closed sets if for every p € X and every neighbourhood U of p, there exists an
index ¢ € I and a closed set 0 C Y; such that fi(p) ¢ 0 and fi(z) € 0 for all z € X \ U.
Intuitively, one interprets the latter condition as saying that f; is nonzero at z and
vanishes outside of U. We now state a quite general embedding theorem, whose proof
is fairly transparent view of the preceding lemma.

Theorem 6. If X is a Ty space and f; : X — Y;, i € I is a family of continuous
functions which separates points from closed sets, then the function f: X — [[;c; Xi
sending x to (fi(x))ier is an embedding.

2In contrast, there exist subsets of R (for example, E or Q N [0,1]) which satisfy the hypotheses of
Sierpinski’s theorem, but are not order-homeomorphic to Q.

3 Actually, there is another famous subspace of R homeomorphic to a large product available. The set of
irrational numbers in R is homeomorphic to NV (roughly, via continued fraction representations).
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If we want use the preceding to embed a space X into 2V, we will need lots of continuous
functions X — 2. Since 2 is discrete, a clopen subset () of a topological space X is
essentially the same as a continuous function X — 2. One simply considers the function
which is 1 on @ and 0 on X \ Q. In fact, as is easily verified, this correspondence is
such that a collection @); of clopen sets is a basis if and only if the corresponding
family of functions f; : X — 2 separates points from closed sets. We say that X is
zero-dimensional when there is exists a basis of clopen sets. We now characterize the
subspaces of C.

Proposition 3. A topological space X can be embedded into C if and only it X is Tp,
2nd countable, and zero-dimensional.

Proof. Only the “if” part of the proposition is nontrivial, so suppose X is Ty, 2nd
countable and zero-dimensional. Let % be a countable basis for X. Construct a
countable collection of clopen sets 2 by choosing, for each pair U,V € % where this
is possible, a clopen set Qu v satisfying U C Qu,y C V. It is easy to check 2 is a

countable basis of clopen sets. So, there is a countable family fi, fo,... of continuous
functions X — 2 which separates points from closed sets. By Theorem [6] we obtain
an embedding of X into 2% 22 C so we are done. O

Note that dropping 2nd countability in the above gives us the spaces embeddable into
27 for some, possibly uncountable, index set 1.

4 The theorems of Brouwer and Sierpinski

In this section we complete the proofs of the two main results. In both cases, we
prove the space under consideration is zero-dimensional and apply Proposition Bl For
Brouwer’s theorem, this is slightly delicate. Certainly it is worth pointing out at this
point that the following statement is generally false: if x and y are in different connected
components of a space X then there exists a separation U,V of X with z € U and
yeV.

Example 3. Let X be the subspace of the Fuclidean plane consisting of the points
p = (0,0) and q = (0,1) together with the vertical lines {1/n} x [0,1], n € N. The
connected components of X are the individual lines and the singletons {p} and {q}.
However, there is no separation U,V of X withp e U and q€ V.

Proof of Brouwer’s theorem. Let X be a nonempty, totally disconnected, compact met-
ric space with no isolated points. We need only prove that X is zero dimensional since
then Proposition Bl and Theorem [B] prove that X is homeomorphic to C. In fact, this
all comes down to the following claim, and the rest is a routine compactness argument.

Claim. If ¢,y € X are distinct, there is a separation U,V of X withx € U, y € V.

Fix x € X and let Y be the (closed) intersection of all clopen neighbourhoods of x. We
need to prove that Y = {z} and, since X is totally disconnected, it suffices to see Y’



is connected. To this end, suppose that A, B are disjoint closed sets whose union is Y.
With no harm done, suppose « € A. We will show that B = & so that Y is connected.
Since X is a normal space, there exist disjoint open sets U,V such that A C U, B C V.
It is clear that the clopen sets which exclude x are an open cover of the (compact)
set X\ (UUV). It follows that are finitely many clopen neighbourhoods of x whose
intersection @, another clopen neighbourhood of z, has AUB C Q C U U V. But now
notice that QN U = @\ V is also a clopen neighbourhood of z s0 Y = AUB C Q CU
requiring B = @. ]

For Sierpiniski’s theorem, it is more straightforward to check zero-dimensionality, but
even after applying Proposition [3, more work needs to be done to get an embedding
whose range satisfies the hypothesis of Theorem Ml

Proof of Sierpiriski’s theorem. Let X = (X,d) be a countable metric space without
isolated points. Let D C [0,00) equal the set of distances d(x,y) as x,y range over
X. Since X is countable, D is countable. Therefore, there exist positive real numbers
€1,€2,...1n (0,00) \ D converging to zero. For x € X and n € N, let U(z,n) = {y €
X :d(x,y) < €n}. By design, the complement of U(z,n) is {y € X : d(z,y) > €,} so
each U(x,n) is clopen. Moreover, the U(x,n) are a basis for X (even a countable one).
So, by Proposition [ there exists an embedding f : X — C. We would like to apply
Theorem @l to f(X), but this is not yet justified since f(X) could equal, say, E and fail
to be order isomorphic to Q.

Note, however, that f(X) C C' C R satisfies the hypotheses of Brouwer’s theorem, or
even Theorem [Bl It follows that f(X) is homeomorphic to C. Therefore, there is in
fact an embedding g : X — C whose image ¢g(X) is dense in C. Now recall that C is
homeomorphic to 2 so that C has a natural topological group structure. We claim
that there exists an x € C' which “translates” f(X) away from the problematic points
of E. That is, there exists € C such that (f(X) + x) N E = @. In fact, whenever
A, B C C are countable, there must be an x € C with (A+z)NB = &. This is because
(A+ )N B # @ if and only if z is in the countable set {b —a : a,€ A,b € B} so the
set of x € C that don’t work is countable. So, by composing g with an appropriate self
homeomorphism of C, we obtain an embedding h : X — C such that g(X) is dense in
C and g(X)NE = @. Now, we claim that every point in h(X) is a 2-sided limit point
of h(X) so that Theorem Ml can be applied. Indeed, any point ¢ € C'\ E is a 2-sided
limit of C, hence a 2-sided limit point of h(X) (since h(X) is dense in C'). Therefore,
h(X) is (order) homeomorphic to Q. Since X is homeomorphic to h(X), this proves
Sierpinski’s result. O

5 Modifying hypotheses

Sierpinski’s theorem characterizes Q by the properties countable, metrizable and no
isolated points. If one wishes to expunge any reference to a metric from the theorem,
one can replace metrizable with 1st countable and regular. This is possible because,
for countable spaces, 1st countable implies 2nd countable so Urysohn’s metrization



theorem gives the nontrivial half of the equivalence. The following example shows that
countable, reqular and no isolated points do not suffice. Not even if regular is improved
to zero-dimensional.

Example 4. Let X = Q[z] be the space of polynomial functions from R — R with ratio-
nal coefficients. Give X the topology of pointwise convergence. Clearly X is countable
and has no isolated points. Also, X is zero dimensional. To see this, suppose that
U is a neighbourhood of p € X. Without loss of generality, there is an € > 0 and
ai,...,an € R such that U = {q € X : |q(a;) — p(ai)| <€ fori=1,...,n}. For each i,
Si = {q(a;) : ¢ € X} is countable, so there exist r;,s; € R\ S; with p(a;) —e < r; <
pla;) < s; < pla;)+e. Then, the set Q :={q € X :r; < q(a;) <s; fori=1,...,n} is
clopen and satisfies p € Q C U, so X is zero dimensional. However, X does not have
strong enough countability properties to be metrizeable so is not homeomorphic to Q.
It is not difficult to see X is not 1st countable. In fact more is true. Sequences do not
suffice to detect limit points in X. Let'Y be the set of ¢ € X with |q(x)] <1 on [0,1]
and with fol q(z) dx > 1/2. It is clear that the zero polynomial is in the closure of Y.
But, the zero cannot be a the limit of a sequence (q;) in'Y . If such q; converge pointwise
to zero, then Lebesque’s dominated convergence theorem implies that the sequence of
integrals fol qi(z) dx converges to zero as well, which is impossible by design.

The following example shows that countable, 2nd countable and no isolated points do
not suffice. Not even if we assume totally disconnected and Hausdorff in addition.

Example 5. As a set, take X to be the union of Q with two idealized points py and
p1. Form=0,1,2,..., let I, = (n,n+ 1). We topologize X by taking U C X open if
and only if all of the following hold.

e UNQ is open in the standard topology on Q.
o Ifpge U, then U contains all but finitely many of Iy, Iz, 14, .. ..
e Ifpy € U, then U contains all but finitely many of Iy, I3, Is, . . ..

It is easy to see that X is 2nd countable, Hausdorff, totally disconnected and has no
isolated points. However, X is not reqular. For example, Z. C X is closed and py ¢ Z,
but Z and p cannot have disjoint neighbourhoods.

Brouwer’s theorem characterizes C by the properties totally disconnected, compact,
metrizable and no isolated points. Here, metrizable can be replaced with Hausdorff and
2nd countable (since these conditions are equivalent in the presence of compactness)
if a “metric free” characterization is desired. Obvious examples show no one of these
conditions can be dropped. Finally, in the proof of Brouwer’s theorem, compactness
was used in a key way to deduce zero-dimensionality from total disconnectedness. The
compactness assumption is crucial. For example, Cantor’s leaky tent is a (noncompact)
subspace of the Euclidean plane which is totally disconnected with no isolated points,
but not zero-dimensional - nor even totally separated [7].
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