HARMONIC FUNCTIONS AND POTENTIALS IN RV

1. THE LAPLACIAN AND GREEN’S IDENTITIES
The Laplacian is the second-order differential operator defined on functions f € C? by:
Af =div(Vf),

the divergence of the gradient vector field. In standard euclidean coordinates (z1,... ,Zn), it is the
trace of the Hessian of f:

Af = foizs + o+ fonan-
In polar coordinates f = f(r,w), where r is distance to 0 € RV and w € SV 1, A has the expression:
N -1 1
Af = fT‘T + Tfr + T_QASfJ
where Ag is a second order differential operator acting only on the coordinates w. In fact, if we
write a generic point w € S as w = (fsinp,cosp) € RN~ x R, where ¢ € [0,7] and § € S¥—1 = &,

the operator Ag is given by:

cos 1
Asf = fop+ (N =2t

f<p+ . 9 AS’fa
sin® ¢

sin ¢
where Ag is a second-order differential operator acting only on the variable 8. In particular, setting
for the circle S': Agif = fg9 (where (r,0) are standard polar coordinates in R?), this defines
(inductively) Ag in all dimensions. For example, for N = 3, the operator Ag is given by:

Cos @ 1

ASf = fsago + m.ﬁp +

foo.

sin? ¢

An important tool in the theory of potentials is given by Green’s identities for the Laplacian,
which follow easily from the divergence theorem. Recall that if D C RY is a smooth bounded
domain, with unit outward normal vector n at points of its boundary D, and if X is a smooth
vector field in the closed domain D = D U 8D, we have:

/ divXdvol = X -ndA,

D 8D

where dvol = dz; ...dzx is the element of volume in RV (area if N = 2) and dA is the element
of area on 0D (arc length if N = 2). In the important special case D = Bg,0D = Sg (the N-
dimensional ball, resp. (N — 1)-dimensional sphere centered at the origin), we have the relation (in
coordinates (r,¢,6) € Rt x [0,7] x SN¥~2, as above):

dvol = rN7'drdw, dA = RN"'dw, dw = (sinyp)N"2dpdb,

where dw, df are the elements of ‘area’ in SV 1, SV=2 (resp.); in particular d@ is just arc length on
the unit circle if N = 3.

Specializing the divergence theorem to the case X = gV f, where f, g are smooth functions on D,
we obtain:
of

g-dA, (G1)
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where 0f /On = V f - n is the exterior normal derivative of f at the boundary. This is Green’s first
identity. Interchanging f and g and taking the difference, we obtain Green’s second identity:

dg of
Ag — gA = —= — g—|dA. 2
[ 189 -gafavel = [ 1158~ g70a ()
Setting f = g in (G1) we obtain the important identity:
/[fAf+|Vf|2]dvol=/ 2 aa (1.1)
D ap” On

Definition 1.1 A function v : D — R™ is harmonic in D if Au = 0.

It is clear from (1.1) that if » is harmonic in D (with D C R” bounded) and either u =0 on 0D
(Dirichlet boundary conditions) or g—z =0 on 8D (Neumann boundary conditions), then u must be
constant in D (and the constant is zero in the Dirichlet case).

This is a good point to introduce the main boundary value problems of potential theory. A
physical motivation arises from electrostatics, where Maxwell’s equations for the electric field E due
to a charge distribution in space characterized by the charge density function p : R® — R are (in
appropriate units):

divE = p, curlE = 0.

The second equation implies the existence of a ‘potential function’ v : R® — R with the property:
E = —Vu, and hence Au = —p. The sign (—) is included so that a positive charge ‘falls’ from
regions of higher potential to regions of lower potential (in particular for a point charge at the
origin, u = —1/4nr increases from —oo at the origin to 0 at infinity).

The interior Dirichlet problem for a bounded domain D asks for the potential u inside a perfect
conductor (zero charge density), given the potential f on the boundary:

Au=0in D, wu=fondD (Dirichlet).

The interior Neumann problem for a bounded domain D asks for the potential function » inside a

perfect conductor D, given the normal component of the electric field (E, = —0u/dn) at boundary
points:
. Ou
Au=0in D, = fondD (Neumann).

The ‘exterior’ Dirichlet and Neumann problems are defined similarly- one wishes to find the potential
outside of D, assuming there are no charges in the exterior.

Exercise. Show that if u;, us are solutions of the same interior Dirichlet (resp. interior Neumann)
problem for the same f, then u; = uy in D (resp. u; = us + const. in D).

2. POTENTIALS IN RV,

In this section we consider ‘whole-space’ problems. The first observation is that, unlike the one-
dimensional case (where solutions of u,, = 0 are linear, and thus define a two-dimensional space), in
RN for N > 2 there is a multitude of non-linear harmonic functions. For instance, denoting by P}
the vector space of homogeneous polynomials in n variables, we may consider the subspace H}} C P}
of homogeneous harmonic polynomials of degree d in n variables. We have:

dim(H3 = 2, basis: {z* — y*, zy},
dim(H3 = 2, basis: {2° — 3z%y,y° — 3z°},

and in general dim(H2%) = 2, with basis given by the real and imaginary parts of z? = (z + iy)?.
Note that dim(P[E) =2d+1.
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In three variables, since a general homogeneous polynomial p € ’Pg may be written in the form:
d
p(z,9,2) = 3 pilz,p)7, pie P
i=0

we have dim(P3) = Y% dim(P?) = 142+...+(d+1) = (d+1)(d+2)/2. To find the dimension of
the subspace H3 C P3, we observe that H3 is the kernel of the linear map defined by the Laplacian:

A:P3 =PI, d>2.
It is not hard to show that this linear map is onto, and therefore:
dim(H3) = dim(kerA) = dim(P3) — dim(P3_,) = (d+1)(d+2)/2 —d(d —1)/2 = 2d + 1.
With this information, it is not hard to find bases for the H3:
dim(H3) = 5, basis: {z° —y?, zy,22,yz, 2> — 2%}
dim(H3) =7, basis: {(262 — y*)z, (2 — 2%)y,2® — 3zy?, 9y — 322y, 2% — 3222, (y* — 2%)z, xy2}.

In general, one gets enough examples for a basis of H3 by (i)multiplying elements of H3_, by z;
(ii)permuting variables.

It is also natural to look for examples of rotationally symmetric harmonic functions in RV, that
is, harmonic functions depending only on distance to the origin, r. A harmonic v = u(r) is a solution
of the ordinary differential equation:

Uppr + ufr =0,
r
which has solutions:
u(r) = Crlogr + Cy, N = 2;
u(r) = Cir* N +Cy,N > 3.
Thus we see that, except for constants, there are no rotationally symmetric harmonic functions
defined on all of RV (only one RN — {0}).

Shifting the origin to an arbitary 2o € RV and choosing particular values for the constants C;, Cs,
we obtain an important definition:

Definition 1.2. The Green’s function for RN with ‘pole’ at zy € R™ is:

Gaol0) = o o= e V2 3:6a(@) = g logla — o, (V=)
Note that the Green’s function is positive and decays to zero at infinity for N > 3, but changes
sign and does not decay at infinity if N = 2 (this is reflected in vastly different qualitative properties
for Brownian motion when for N = 2 and N > 3). When N = 3, G, (z) = m has the
physical interpretation ‘electric potential produced by a unit point positive charge at x’. It solves

the equation:

AGy, = —0z,,
(the ‘delta function at zo’, and corresponds to the electic field:
1

E(z) = =VGa,(z) = T



