1. FOURIER SERIES

1. Function spaces and norms.
A function f(x) defined on R with values in R or C is of class C* if it has k continuous derivatives
(in particular, C° means continuous). The C* norm of a C* periodic function f is defined as:

[1fllex = max(|f(2)| +|f'@)] + ... |fP @)))-

(These numbers may be infinite for general C* functions f; but they are always finite if f is periodic,
the case of interest here). In particular, ||f||co = maxzer |f(z)|, and we have:

fn = f uniformly in R < ||f, — f]lco — 0.

A continuous function f defined on R is L' (respectively L?) if

/ |f(z)|dz < o0, resp. / |f(2)]Pdz < oc.
— o0 — 00
When this is the case, we define the L' and L? norms by:

o0

o
Wl = [ 1 @ld, Nl = ([ 1r@Pdn
—c0 —o0
Of course, a sequence f, converges to f in L? if and only if ||f, — f||zz — 0, and similarly for
convergence in L!.

Clearly C*, L' and L? are all infinite-dimensional vector spaces (with real or complex scalars).
The H* norm (k > 0 an integer) , which combines the C* and L? norms, is sometimes useful:

1l = (11T + 1122+ -+ P2
Properties.(a)All these norms have the following properties:

(0)||If]] > 0 for all f, and is zero only for the zero function ;
(@) ||cf]| = |||l f|] for any constant ¢ € R( or ¢ € C);
(@@)[|f + gll < |If1] + |lg]| for any two functions f,g.

In fact, these three properties define the term ‘norm’ on a vector space. One should thing of a
norm as a measure of ‘size’ of a function. For vectors in R¥ there is a ‘natural’ way to measure
length; but for functions this is not the case, and the notion of ‘size’ that is most useful depends
on the particular problem. The reason norms are useful is that they allow us to make quantitative
statements (for example, stability statements for solutions of PDE).

(b)For 2m-periodic functions on R, the following inequalities are easily seen to hold:

Al z2t—mmy < Cllfllcos M f s —m,m < Crll fllc-

Here when computing L? or H* norms we compute the integrals only in [—m,7]. One may take
C = (2r)'/? and C} = [(k +1)2x]*/2. But in truth the precise value of the constant is irrelevant for
most purposes; all that matters is that it is independent of f. What these inequalities mean is that
the C* norms are ‘“finer’ than the H* norms (one instance of this is that the first inequality shows
that uniform convergence implies convergence in L?).

2. Fourier series of periodic functions.
The formal Fourier expansion and complex Fourier coefficients of a 2m-periodic function are
defined by:

n=—oo

- inx 1 i —in
f(x) ~ Z Cn€ ) Cp = % /_7‘, f(l')e dZ'
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For n > 1, we define the partial sum and averaged partial sum (or ‘Cesaro partial sum’) by:

N . 1 X
sn(z) = ;Vcne , ON= N—ngosj.
Integration by parts easily shows the following;:
f € Cper = calf1= (—in)enlf];
inductively, we have for f € C¥,:
enlfM] = (=in)*en ).

(The subscript per emphasizes we are looking at 27 —periodic functions.) From the definition of the
Fourier coefficients, it is obvious that we have:

1
|Cn| < —7r||f||L1[,7r’.,r] < ||f||co, for all n € Z,f S Cger;

Combining this with the preceding fact, we see that for f € Cgerz
1 lealf1] = lealf P < ClF Pllco < ClIfllox,

or equivalently:
c .
len| < W||f||ck, foralln € Z,n#0, if f € Ch,,..

This is the easiest instance of the basic principle:

f has continous derivatives of higher order <= faster decay of the Fourier coefficients as |n| — oo.

3. The first main theorem.

The space Py of (complex) trigonometric polynomials of degree N is defined as: all linear com-
binations of {e~iN® e=iN-1z  g=iz 1 ¢iz iN-1)z ¢iNel with complex coefficients. It is a
vector space with scalars C, of dimension 2N + 1 (and incidentally a subspace of each of the spaces
defined above!) Clearly for any periodic f the partial sums sy(z) and on(z) are elements of Py.

Theorem 1. Let f € CSW. Then sy is the best approximation of f by an element of Py, in the
L? sense:

lf = snllz> = min{[|f — gl|z>; 9 € PN}
The proof follows from the calculation (‘completing the squares’): if g = ZJ_VN b,ei"® € Py:

N N
1f = 9llF ey = T m) + 27 D len = bal® = 27 ) |eal*.
-N -N

Clearly the right-hand side is minimized by choosing b,, = ¢, for all n, which means g = sy.
Setting ¢, = b,, we obtain:

N
||f - SN||%2[—71’,7T] = ||f||%2[—7r,7r] - 27‘-2 |c"|27
—N

which implies Bessel’s inequality:
o

1
2 2
Z |cn| S %||f||L2[—7r,7r]7

—0o0

as well as the fact that we have equality (‘Parseval’s equality’) exactly when sy converges to f in
the L? sense. (Theorem 3 below shows this is always the case for continuous f.)



Now assume f € Czlm, and consider Bessel’s inequality for the derivative f’:

oo o0 1
Y nPlealf1P =Y lealf NP < o 1 L2 m-

Combining this with the Cauchy-Schwarz inequality, we obtain the very useful statement:

o
1 1/2 2 2\1/2
;|CH|S|CO|+(Z ﬁ) / (Z” lenl®)Y

n#0 nez
< C(||f||2L2[77I',7I'] + ||fl||2L2[f‘ir,7r])1/2 = C||f||H1[*7r,7r] < C,||f||01

This argument also works for higher derivatives to give a proof of the following.
Proposition 2. Let f € C;’fer- The Fourier coefficients of f satisfy:

oS
Y Il eal < Cllflla < C'lIfllow,s
—oo

where C, C' are positive constants independent of f (but dependent on k).
This is another (and very useful) instance of the basic principle stated above.

4. The second main theorem.

Even though the partial sums sy(z) do not always converge to f(z) (even pointwise!) if f is only
assumed to be continuous, we do have uniform convergence of the Cesaro sums on:

Theorem 3 (Fejér). If f is continuous and periodic, oy — f as N — oo, uniformly in R.

Proof.(outline) Define:

N i N
_ 1 inx __ 1 <1\ i T
Kn(@) =520 2 €™ = 5o 2 IV +1-lihe.

We have the expression for the averaged partial sum op:

1

on@) =5 [ S0 Kn(z - )y

It can be shown that K (z) (‘Fejér’s kernel’) admits the alternative expression:

1 sin®[(N +1)z/2]
CN+1 sin(z/2)

Kn(z) (x#0), Kn(0)=N+1.

From this expression, it is clear that Knxy > 0. From the definition of Ky, it follows easily that
3 " Kn(x)dz = 1. One can also show that, for each 0 < § < :

i /_ j + /(s K (2)do = 0.

Given € > 0, we first fix § > 0 so that:

max |f(z + y) — f(z)| < €/2, for each z € [—7,7].
ly/<é

(This is possible since f is uniformly continuous, given that f € C’Ser.) Then take N sufficiently
large, so that this last integral (which depends on §) is smaller than €/(2||f||co). Using the three
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properties of K just mentioned and a change of variables, we may write:

KO ™

lon(2) = f(@)| = [ Kn(z-y)(fly) = f@)dyl =] | En@)(f(z+y) = f(z))dyl

-7 -

< [" Kn@)f(@+y) - f@)ldy

—T

g/_Z(...)dy+/_:(...)dy+/;(...)dy

< (max |7z +9) - F@)) " Kn()dy + 2/|]|o / /;)KN(y)dy

< 5 +2l|fllevs,

from the choice of § and N. Since € is arbitrary, this concludes the proof.

Corollary 4. (Weierstrass’ theorem.) Any continuous function in [—m, 7] can be uniformly
approximated by trigonometric poynomials.

This clearly follows from the theorem, since on € Pn.

Remark. Using Corollary 4 and Taylor’s theorem, one can prove the following version of Weier-
strass’ theorem: any continuous function in a bounded interval [a, b] can be approximated by poly-
nomials, uniformly on [a,b]. (homework problem).

-

Corollary 5. If f is continuous and periodic, sy — f in the L? sense.
This follows by combining the minimizing property (theorem 1), theorem 3 and the inequality
between C° and L? norms:

IIf = swllpep—mm < |If = onllezpra) < V27| f = on||co = 0.

Corollary 6.(Riemann-Lebesgue lemma) If f is continuous and periodic, ¢, — 0 as n — +oo.
Given € > 0, let N be so large that ||f — on||co < e. Then if n > N, the Fourier coefficient

enlon] = 0, 50 |en[f]| = |enlf] — cnlon]| < V27[|f — on|| < €/v/2m. Since € is arbitrary, this proves
the claim.

Corollary 7. (Identity principle) If f, g are continuous, periodic functions with the same Fourier
coefficients, then f = g.
This is clear, since on[f] = on|[g] for each N, and hence:

IIf = gllce < llon[f] = fllco + llon(g] = gllco = 0 as N = oo.
Corollary 7 is used in the proof of the third main theorem:

Theorem 8 (uniform convergence). If f € C peT, then sy — f uniformly in R. (In fact it is
enough for f' to be piecewise continuous). More generally, if f € C,’,fer, sy — fin C*~! norm.
The fact that ) ., |ca| < oo and the Weierstrass M-test easily imply that sy(z) converges

uniformly to a function g(z). This and the estimate:

lenlg] = enlsn]| < 2mlg — sw [ o

show that, for each n € Z, ¢,[sn] — ¢nfg] as N — oo. Since, for each n, ¢,[f] = en[sn] for N > |n|,
this implies ¢, [f] = cn[g] for all n. By corollary 7, g = f.



