MATH 142- EXAM 3-March 16, 2005
Instructions. No credit for answers given without justification. Calculators allowed. Time given: 60 minutes.

1. [4,4] For the closed curve in the (x, y) plane with parametric equations:

$$
x(t)=R \cos ^{3} t, \quad y(t)=R \sin ^{3} t, \quad t \in[0,2 \pi]
$$

(i) Find the total length of the curve (given: $\int_{0}^{\pi / 2} \cos t \sin t d t=1 / 2$)
(ii) Find the area of the region enclosed by the curve (given: $\int_{0}^{2 \pi} \cos ^{2} t \sin ^{2} t d t=$ $\pi / 4$.)
2. $[4,4,4]$ Consider the region D bounded by the x-axis and the graph of the function:

$$
y=f(x)=H\left(1-x^{4}\right), \quad x \in[-1,1] .
$$

(a) Find the area of D;
(b) Find the y-coordinate of the center of mass of D;
(c) Find the volume of the solid obtained by rotating D about the y -axis.
3.[4] Find the center of mass of the region in the first quadrant sketched below and the volume of the region obtained by rotating it about the y-axis (not necessarily in this order.) You may use Pappus' theorem.
4. $[4,4]$ The time spent waiting in line at a certain bank is modelled by an exponential probability density function with mean 8 minutes.
(a) What is the probability that the customer is served in the first three minutes?
(b) What is the median waiting time?

