MATH 142- EXAM II-Feb.15, 2005
Instructions. No credit for answers given without justification, even if correct. Calculators allowed except for problem 4. Time given: 50 minutes.

1. $[4,4](\mathrm{i})$ For the function $f(x)$ on $[-2,1]$ whose graph is given below (concave down), the following information about Riemann (or trapezoidal) sums with $n=50$ is known:

$$
\begin{gathered}
S_{50}^{l e f t}[-2,0]=7.253 \quad S_{50}^{\text {right }}[-2,0]=7.413 \quad S_{50}^{\text {midpt }}[-2,0]=7.4128 \\
S_{50}^{l e f t}[0,1]=4.677 \quad S_{50}^{\text {right }}[0,1]=4.657
\end{gathered} \quad S_{50}^{\text {trap }}[0,1]=4.667 .
$$

Use this to find a number that approximates $\int_{-2}^{1} f(x) d x$ as closely as possible, but is guaranteed to be smaller than the integral.
(ii) Given that $\max _{[-2,1]}\left|f^{\prime}\right| \leq 5$ and $\max _{[-2,1]}\left|f^{\prime \prime}\right| \leq 4$, estimate the error involved in your approximation.
(Compare exam 1, problem 1)
2. [4, 4] Let $f(x)=\left(1+x^{2}\right)^{-1}-1 / 2$ for $|x| \leq 1, f(x)=0$ for $|x|>1$ (graph of f given below.) Define

$$
g(x)=\int_{-1}^{x} f(t) d t
$$

(i) Sketch the graph of $g(x)$ (for all $x \in \mathbb{R}$), indicating where it is increasing/decreasing/constant, concave up/concave down.
(ii) Find $\lim _{x \rightarrow+\infty} g(x)$.
(Compare exam 1, problem 3
3. $[4,4,4,4]$ Compute the following indefinite integrals:
(i) $\int \sin ^{3} t d t \quad$ (remember $3=2+1$.)
(ii) $\int x^{-1 / 3}\left(1-x^{2 / 3}\right)^{3 / 2} d x$.
(iii) $\int \frac{x}{(x-1)(x-2)} d x$.
(iv) $\int \arctan x d x$.
(Compare text p. 403 and practice handout)
4. [4] Sketch the region in the (x, y) plane bounded by the curves $x+y^{2}=$ 2 and $x+y=0$ and compute its area.
(Compare 6.1 no. 12)

