Midterm (Take Home)

You must upload the solutions to this exam by $11: 59 \mathrm{pm}$ on Tuesday $06 / 16$. Since this is a take home, I want all your solutions to be neat and well written.
You can look at your notes, class discussions on SMC, our book, our videos and solutions posted by me, but you cannot look at any other references (including the Internet) and you cannot discuss this with anyone!
You can use a computer only to check your answers, as you need to show work in all questions.

1) [15 points] Use the Extended Euclidean Algorithm to write the GCD of 1183 and 826 as a linear combination of themselves. Show the computations explicitly! [Hint: You should get 7 for the GCD!]
2) [13 points] Compute the LCM of 1183 and 826 [the same numbers above!].
3) [15 points] Find the remainder of the division of 9482^{1532} when divided by 5 [i.e., what is 9482^{1532} congruent to modulo 5]. Show your computations explicitly!
4) [15 points] Give the set of all solutions of the system

$$
\begin{array}{ll}
4 x & \equiv 5 \\
5 x & (\bmod 15) \\
52 & (\bmod 33)
\end{array}
$$

[Hint: The system does have solution(s)!]
5) [12 points] Suppose that

$$
\begin{aligned}
m & =2^{a} \cdot 3^{2} \cdot 5^{b} \cdot 7^{3}, \\
n & =2^{5} \cdot 3^{c} \cdot 5^{4} \cdot 7^{d}, \\
\operatorname{gcd}(m, n) & =2^{5} \cdot 3^{2} \cdot 5 \cdot 7^{2}, \\
\operatorname{lcm}(n, m) & =2^{7} \cdot 3^{2} \cdot 5^{4} \cdot 7^{3} .
\end{aligned}
$$

Find a, b, c and d.
6) [15 points] Let a, b and c be positive integers and suppose that there are $r, s, t \in \mathbb{Z}$ such that

$$
r a+s b+t c=1
$$

Prove that $\operatorname{gcd}(a, b, c)=1$.
7) [15 points] Let p be a prime. Prove that for any integer a such that $p \nmid a$, the equation $x^{p}-x+a=0$ never has an integral [i.e., in \mathbb{Z}] solution.
[Hint: As I've mentioned before, if an equation has an integral solution, it has a solution modulo any m.]

