
Final Solutions

1) [10 points] Use the Extended Euclidean Algorithm to write the GCD of

f(x) = x6 + x5 + x4 + x3 + x2 + 1, [notice, no x1!]

g(x) = x4 + x3

in F2[x] [not in Q[x]! ] as a linear combination of themselves. Show the computations explicitly!
[Hint: You should get x+ 1 for the GCD!]

Solution. We have:

f = g · (x2 + 1) + (x2 + 1)

g = (x2 + 1) · (x2 + x+ 1) + (x+ 1)

(x2 + 1) = (x+ 1)(x+ 1) + 0.

So, the GCD is x+ 1, and

x+ 1 = g + (x2 + 1)(x2 + x+ 1)

= g + (f + g(x2 + 1))(x2 + x+ 1)

= (x2 + x+ 1)f + (x4 + x3 + x)g.

2) [16 points] Determine if the following polynomials are irreducible or not in Q[x]. [Justify!]

(a) f(x) = x30 − 13x17 + 10x6 + 8x3 − 5x− 1

Solution. We have, by trying the rational root test, that f(1) = 0, so (x − 1) is a proper
factor and hence f(x) is reducible.

(b) f(x) = 3x5 + 8x4 − 14x3 − 6x2 − 2x+ 14

Solution. By Eisenstein’s Criterion for p = 2, we have that f(x) is irreducible.

(c) f(x) = 7x3 − 4x+ 16

Solution. Reducing modulo p = 3, we get x3 − x + 1, which has no root in F3. Since it has
degree 3 and no root, it is irreducible in F3[x], so irreducible in Q[x].

(d) f(x) = x200 + 2x100 + 1
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Solution. We have that f(x) = (x100 + 1)2. So, it is reducible.

3) [15 points] Let σ, τ ∈ S9 be given by

σ =

(
1 2 3 4 5 6 7 8 9
5 6 3 9 7 8 1 2 4

)
and τ = (1 5 3 2)(4 8 9).

(a) Write the complete factorization of σ into disjoint cycles.

Solution. σ = (1 5 7)(2 6 8)(3)(4 9).

(b) Compute τσ. [Your answer can be in matrix or disjoint cycles form.]

Solution. τ · σ = (1 3 2 6 9 8)(4)(5 7) =

(
1 2 3 4 5 6 7 8 9
3 6 2 4 7 9 5 1 8

)
.

(c) Compute στσ−1. [Your answer can be in matrix or disjoint cycles form.]

Solution. στσ−1 = (5 7 3 6)(9 2 4).

(d) Write τ as a product of transpositions.

Solution. τ = (1 2)(1 3)(1 5)(4 9)(4 8).

(e) Compute sign(τ).

Solution. sign(τ) = (−1)5 = −1.

4) [15 points] Compute the order of the following group elements [remember |g| denotes the order
of g]:

(a) |[6]| in I15;

Solution. We have:

1 · [6] = [6] 6= 0,

2 · [6] = [12] 6= 0,

3 · [6] = [18] = [3] 6= 0,

4 · [6] = [24] = [9] 6= 0,

5 · [6] = [30] = 0.

So, |[6]| = 5.
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(b) |[3]| in U(I11) [i.e., in the group of units of I11];

Solution. We have:

[3]1 = [3] 6= 1,

[3]2 = [9] 6= 1,

[3]3 = [27] = [5] 6= 1,

[3]4 = [3] · [5] = [15] = [4] 6= 1,

[3]5 = [3] · [4] = [12] = 1.

(c) |−7| in Z;

Solution. Since for all positive integer n we have n · 7 6= 0, we have that n has infinite
order.

(d) |(2 3 7)(1 5)(6 4)| in S9

Solution. We have |(2 3 7)(1 5)(6 4)| = lcm(3, 2, 2) = 6.

5) [14 points] Examples:

(a) Give an example of an infinite integral domain R for which 14 · a = 0 for all a ∈ R.

Solution. Either F2[x] or F7[x]. [I14[x] is not a domain.]

(b) Give an example of a field F that contains C properly [i.e., C ⊆ F , but F 6= C].

Solution. F = C(x).

6) [10 points] Let G be an Abelian group [using multiplicative notation]. Let n be a [fixed!] integer
and consider

H
def
= {x ∈ G : xn = 1}.

Prove that H is a subgroup of G. Point out where, if ever, you’ve used the fact that G is Abelian!
[If never, do say so!]

Proof. We have that 1n = 1, so 1 ∈ H.
If x, y ∈ H, then xn = yn = 1. Then, since G is Abelian, we have that (xy)n = xnyn = 1 · 1 = 1.
Finally, if x ∈ H, then xn = 1. Thus, (x−1)n = (xn)−1 = 1−1 = 1.
So, H is a subgroup of G.
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7) [10 points] Let G be a group [with multiplicative notation] of order 12, not cyclic, and suppose
that g6 6= 1 for some g ∈ G. Find |g|.

Proof. We know that |g| | |G| = 12. So, |g| ∈ {1, 2, 3, 4, 6, 12}. Since |g|6 6= 1, we can discard order
1, 2, 3 and 6. So, it is either of order 4 or order 12. If |g| = 12, then 〈g〉 = G [as it has 12 elements],
and G would be cyclic. Since it is not, we must have that |g| = 4.

8) [10 points] Let R be a ring for which (a+ b)2 = a2 + b2 for all a, b ∈ R. Prove that for all c ∈ R,
we have that 2 · c = 0 [i.e., c+ c = 0].

[Hint: What should (a+ b)2 be equal to?]

Proof. Since R is a commutative ring, we have that

(c+ 1)2 = c2 + 2c+ 1.

But, by assumption, (c+ 1)2 = c2 + 1. Hence, 2c = 0.
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