Final Solutions

1) [10 points] Use the Extended Euclidean Algorithm to write the GCD of

$$
\begin{aligned}
& f(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1,\left[\text { notice, no } x^{1}!\right] \\
& g(x)=x^{4}+x^{3}
\end{aligned}
$$

in $\mathbb{F}_{2}[x][$ not in $\mathbb{Q}[x]!]$ as a linear combination of themselves. Show the computations explicitly! [Hint: You should get $x+1$ for the GCD!]

Solution. We have:

$$
\begin{aligned}
f & =g \cdot\left(x^{2}+1\right)+\left(x^{2}+1\right) \\
g & =\left(x^{2}+1\right) \cdot\left(x^{2}+x+1\right)+(x+1) \\
\left(x^{2}+1\right) & =(x+1)(x+1)+0 .
\end{aligned}
$$

So, the GCD is $x+1$, and

$$
\begin{aligned}
x+1 & =g+\left(x^{2}+1\right)\left(x^{2}+x+1\right) \\
& =g+\left(f+g\left(x^{2}+1\right)\right)\left(x^{2}+x+1\right) \\
& =\left(x^{2}+x+1\right) f+\left(x^{4}+x^{3}+x\right) g .
\end{aligned}
$$

2) [16 points] Determine if the following polynomials are irreducible or not in $\mathbb{Q}[x]$. [Justify!]
(a) $f(x)=x^{30}-13 x^{17}+10 x^{6}+8 x^{3}-5 x-1$

Solution. We have, by trying the rational root test, that $f(1)=0$, so $(x-1)$ is a proper factor and hence $f(x)$ is reducible.
(b) $f(x)=3 x^{5}+8 x^{4}-14 x^{3}-6 x^{2}-2 x+14$

Solution. By Eisenstein's Criterion for $p=2$, we have that $f(x)$ is irreducible.
(c) $f(x)=7 x^{3}-4 x+16$

Solution. Reducing modulo $p=3$, we get $x^{3}-x+1$, which has no root in \mathbb{F}_{3}. Since it has degree 3 and no root, it is irreducible in $\mathbb{F}_{3}[x]$, so irreducible in $\mathbb{Q}[x]$.
(d) $f(x)=x^{200}+2 x^{100}+1$

Solution. We have that $f(x)=\left(x^{100}+1\right)^{2}$. So, it is reducible.
3) [15 points] Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 6 & 3 & 9 & 7 & 8 & 1 & 2 & 4
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{llllll}
1 & 5 & 3 & 2
\end{array}\right)(489) .
$$

(a) Write the complete factorization of σ into disjoint cycles.

Solution. $\sigma=(157)(268)(3)(49)$.
(b) Compute $\tau \sigma$. [Your answer can be in matrix or disjoint cycles form.]

Solution. $\tau \cdot \sigma=(132698)(4)(57)=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 2 & 4 & 7 & 9 & 5 & 1 & 8\end{array}\right)$.
(c) Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in matrix or disjoint cycles form.]

Solution. $\sigma \tau \sigma^{-1}=\left(\begin{array}{l}5 \\ 7\end{array} 6\right)(924)$.
(d) Write τ as a product of transpositions.

Solution. $\tau=(12)(13)(15)(49)(48)$.
(e) Compute $\operatorname{sign}(\tau)$.

Solution. $\operatorname{sign}(\tau)=(-1)^{5}=-1$.
4) [15 points] Compute the order of the following group elements [remember $|g|$ denotes the order of g]:
(a) $|[6]|$ in \mathbb{I}_{15};

Solution. We have:

$$
\begin{aligned}
& 1 \cdot[6]=[6] \neq 0, \\
& 2 \cdot[6]=[12] \neq 0, \\
& 3 \cdot[6]=[18]=[3] \neq 0, \\
& 4 \cdot[6]=[24]=[9] \neq 0, \\
& 5 \cdot[6]=[30]=0 .
\end{aligned}
$$

So, $|[6]|=5$.
(b) $|[3]|$ in $U\left(\mathbb{I}_{11}\right)$ i.e., in the group of units of $\left.\mathbb{I}_{11}\right]$;

Solution. We have:

$$
\begin{aligned}
& {[3]^{1}=[3] \neq 1,} \\
& {[3]^{2}=[9] \neq 1,} \\
& {[3]^{3}=[27]=[5] \neq 1,} \\
& {[3]^{4}=[3] \cdot[5]=[15]=[4] \neq 1,} \\
& {[3]^{5}=[3] \cdot[4]=[12]=1 .}
\end{aligned}
$$

(c) $|-7|$ in \mathbb{Z};

Solution. Since for all positive integer n we have $n \cdot 7 \neq 0$, we have that n has infinite order.
(d) $|(237)(15)(64)|$ in S_{9}

Solution. We have $|(237)(15)(64)|=\operatorname{lcm}(3,2,2)=6$.
5) [14 points] Examples:
(a) Give an example of an infinite integral domain R for which $14 \cdot a=0$ for all $a \in R$.

Solution. Either $\mathbb{F}_{2}[x]$ or $\mathbb{F}_{7}[x]$. $\left[\mathbb{I}_{14}[x]\right.$ is not a domain. $]$
(b) Give an example of a field F that contains \mathbb{C} properly [i.e., $\mathbb{C} \subseteq F$, but $F \neq \mathbb{C}]$.

Solution. $F=\mathbb{C}(x)$.
6) [10 points] Let G be an Abelian group [using multiplicative notation]. Let n be a [fixed!] integer and consider

$$
H \stackrel{\text { def }}{=}\left\{x \in G: x^{n}=1\right\} .
$$

Prove that H is a subgroup of G. Point out where, if ever, you've used the fact that G is Abelian! [If never, do say so!]

Proof. We have that $1^{n}=1$, so $1 \in H$.
If $x, y \in H$, then $x^{n}=y^{n}=1$. Then, since G is Abelian, we have that $(x y)^{n}=x^{n} y^{n}=1 \cdot 1=1$. Finally, if $x \in H$, then $x^{n}=1$. Thus, $\left(x^{-1}\right)^{n}=\left(x^{n}\right)^{-1}=1^{-1}=1$.
So, H is a subgroup of G.
7) [10 points] Let G be a group [with multiplicative notation] of order 12, not cyclic, and suppose that $g^{6} \neq 1$ for some $g \in G$. Find $|g|$.

Proof. We know that $|g|||G|=12$. So, $| g \mid \in\{1,2,3,4,6,12\}$. Since $|g|^{6} \neq 1$, we can discard order $1,2,3$ and 6 . So, it is either of order 4 or order 12. If $|g|=12$, then $\langle g\rangle=G$ [as it has 12 elements], and G would be cyclic. Since it is not, we must have that $|g|=4$.
8) [10 points] Let R be a ring for which $(a+b)^{2}=a^{2}+b^{2}$ for all $a, b \in R$. Prove that for all $c \in R$, we have that $2 \cdot c=0$ [i.e., $c+c=0$].
[Hint: What should $(a+b)^{2}$ be equal to?]
Proof. Since R is a commutative ring, we have that

$$
(c+1)^{2}=c^{2}+2 c+1 .
$$

But, by assumption, $(c+1)^{2}=c^{2}+1$. Hence, $2 c=0$.

