
Groups

The first algebraic structure we will study in details is groups.
Unlike all the other structures we briefly discussed, groups have
only one operation. It could be either “sum” or “product”. [As
you might have seen before in Math 251, what we call sum or
product is not necessarily the usual notion of such!]
Before we actually see the definition, here are some examples:

I Any ring, field, vector space, module or algebra with its
corresponding sum. [We just “forget” about the other
operation.]

I A field, say F , without its zero element, with its corresponding
product. This is usually denoted by F× [or F ∗].

I The elements of a ring, say R, that are invertible, with its
corresponding product. This is usually denoted by R×. [Note
that the previous example is a particular case of this one.]



Main Example

But the archetype of a group is the following example: let S be a
set and

Perm(S)
def
= {f : S → S : f is a bijection}.

[Remember, a bijection is a function which is both an injection
[i.e., one-to-one] and a surjection [i.e., onto].]

The operation is the composition of functions. [Remember that
the composition of bijections is a bijection.]

This group is called the group of permutations of S . [The
elements of Perm(S) [i.e., the bijections] simply permute the
elements of S .]



Symmetric Groups

If S has finitely many elements, say n, we can think of it simply as
{1, 2, . . . , n} [by choosing an order to S ]. [Note that S has no
underlying structure!]

Thus, we have Perm(S) = Perm({1, 2, . . . , n}), and we denote this
permutation group by Sn, and refer to it as the symmetric group
of degree n.

This is the example from which the idea of groups came about,
and we will study these in detail!



Getting to the Definition

So, to obtain the definition, we “copy the properties” of Perm(S)
or Sn.

Firstly, unlike the examples coming from “numbers”, here we only
have one [natural] operation: composition. [Note that S has no
structure. If S were, say, a ring, then we could add and multiply
functions, by adding and multiplying their values, as it is usual.]

We always have the identity function: id : S → S , defined by
id(s) = s for all s ∈ S .

Composition of functions are always associative:
(f ◦ g) ◦ h = f ◦ (g ◦ h).

Bijections have inverse functions: given f ∈ Perm(S), there is
g ∈ Perm(S) such that f ◦ g = g ◦ f = id. [Here id is the identity
function above.] This function g is usually denoted by f −1.



Binary Operation

Before we give the precise definition of groups, we give a precise
definition for the referred “operation”. The operations mentioned
so far [sums, products, compositions] are all binary operations.

Definition
A binary operation on a set S is a function from S × S to S .
[So, it produces an element of S from a pair of elements of S .
Note that the result is in S by definition!]



Definition of a Group

Definition
A group is a set G with a binary operation · on G such that:

0. Closed: if g , h ∈ G , then g · h ∈ G . [Note we don’t need to
list this, as it is part of the definition of binary operation, but
it is important not to forget to check it!]

1. Identity Element: there is e ∈ G such that e · g = g · e = g
for all g ∈ G . [Thus, G is non-empty!]

2. Associative: for all g , h, k ∈ G , we have
(g · h) · k = g · (h · k).

3. Inverse Element: for all g ∈ G , there is h ∈ G such that
g · h = h · g = e. [Here e is the identity element above!]

Check that the previous examples are indeed groups!



Identity and Inverse

Theorem
The identity and inverse of an element are unique.

Proof.
Let e ′ be another identity [besides e]. Then,

e · e ′ = e ′ as e is an identity,

e · e ′ = e as e ′ is an identity.

Thus e = e ′.
Let h′ be another inverse of g [besides h]. Then,

h = eh = (h′g)h = h′(gh) = h′e = h′.



Notation

Since they are unique, we can refer to them as the identity of the
group and the inverse of g .

When using the multiplicative notation [as above], we denote the
inverse of g by g−1. The identity is often denoted by 1.

Note that groups are not necessarily commutative [i.e., gh might
be different from hg – this is the case for permutations!].
Commutative groups are called Abelian groups.

Sometimes, when dealing with abstract Abelian groups, one can
denote the operation by “+”. [We never us + for
non-commutative groups!] In this case, the inverse of g is denoted
by −g and the identity by 0.



Powers

Definition
Let a be an element of a group G .
Multiplicative Notation:

I a0 = 1;

I an = a · a · · · a︸ ︷︷ ︸
n factors

for n ∈ Z>0;

I a−n = a−1 · a−1 · · · a−1︸ ︷︷ ︸
n factors

for n ∈ Z>0.

Additive Notation (for Abelian groups):

I 0 · a = 0;

I n · a = a + a + · · ·+ a︸ ︷︷ ︸
n summands

for n ∈ Z>0;

I (−n) · a = (−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸
n summands

for n ∈ Z>0.



Properties of Powers

Theorem
Let G be a group and a, b ∈ G . Then:

I am · an = am+n for all m, n ∈ Z;

I (am)n = amn for all m, n ∈ Z;

I (ab)−1 = b−1a−1.

Note that (ab)2 = abab, not [necessarily] a2b2, as our groups are
not necessarily commutative!

For Abelian groups with additive notation, we have:

I (m · a) + (n · a) = (m + n) · a for all m, n ∈ Z;

I n · (m · a) = (nm) · a for all m, n ∈ Z;

I −(a + b) = (−a) + (−b).

In this case, 2(a + b) = 2a + 2b.



Invertible Matrices

We denote by GLn(R) the set of invertible matrices in Mn(R).
[Remember: a matrix A ∈ Mn(R) is invertible if there is
B ∈ Mn(R) such that BA = AB = In, where In is the n × n
identity matrix. You’ve seen that A ∈ Mn(R) is invertible if, and
only if, det(A) 6= 0.] This is a group with the usual multiplication
of matrices. [Check it! It might be helpful to use properties of the
determinant.]

Similarly, GLn(Z) is the set of invertible matrices in Mn(Z). Is
there a simple way to check if a matrix is invertible there [like the
determinant in GLn(R)]? Yes! A ∈ Mn(Z) is invertible if, and only
if, det(A) = ±1. [Can you see why? Think about the formula to
invert a matrix and remember that we cannot have fractions in the
entries of the inverse!]

GLn(Z) is also a group [with the usual matrix multiplication]. In
general, we call GLn(R) the general linear group of n × n
matrices over R.



Solving Equations

Theorem
Let G be a group [with operation denoted as multiplication]. If
a, b, x ∈ G and ax = b, then x = a−1b.

Proof.
Since we have a−1 ∈ G , we have that

ax = b ⇒ a−1(ax) = a−1b ⇒
(a−1a)x = a−1b ⇒ 1x = a−1b ⇒ x = a−1b.

This works then when G is either a groups of invertible matrices or
a group of invertible “numbers” [both with multiplication].



Further Reading

Please read Section 2.1 from the text for extra examples and
details!


