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Bases and circuits in vector spaces

▶ K : a field

▶ V : a finite-dimensional K -vector space

Some definitions:

▶ Vectors v1, . . . , vn ∈ V are dependent if there exist
c1, . . . , cn ∈ K such that:

c1v1 + . . .+ cnvn = 0

Otherwise, independent.

▶ A basis is a maximal independent set

▶ A circuit is a minimal set of dependent vectors v1, . . . , vn.
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Properties of bases and circuits

Basis exchange property: If B and B ′ are bases for V , and
v ∈ B \ B ′, then there exists w ∈ B ′ \ B such that B ∪ {w} \ {v}
is also a basis.

Corollary

All bases for V have the same number of elements.

Circuit axiom: If C and C ′ are circuits, and v ∈ C ∩ C ′, then there
exists a circuit C ′′ ⊂ C ∪ C ′ \ {v}.

Proposition

The basis exchange property and the circuit axiom are equivalent
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Algebraic independence

▶ L/K : finitely generated field extension

Some parallel definitions:

▶ A set of elements x1, . . . , xn ∈ L is algebraically dependent if
there exists a non-trivial polynomial relation:∑

ai1,...,inx
i1
1 · · · x inn = 0

Otherwise, algebraically independent

▶ A (transcendence) basis is a maximal algebraically independent
set.

▶ A circuit is a minimal algebraically dependent set.
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Algebraic matroids

The circuits of a field extension form a matroid
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Realizability

A matroid is a finite set of elements together with (equivalently)
either of:

▶ A collection of bases satisfying the basis exchange axiom

▶ A collection of circuits satisfying the circuit axiom.

The matroid M is:

▶ linearly realizable over K if there exists a K -vector space V and
a function from the elements of M to V with the same bases.

▶ algebraically realizable over K if there exists an extension L/K
and a function from elements of M to L with the same
(transcendence) bases.
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Non-Fano matroid
Any 3 vertices not on a line are a basis.

Linearly realizable over a field K if and only if K has characteristic
not 2.
Algebraically realizable over any field:

x , y , z , xyz , xy , xz , yz ∈ K (x , y , z)
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Linear characteristic sets

The linear characteristic set of a matroid M is the set of
characteristics of fields over which it is linearly realizable.

Theorem (Rado, Vamós, Kahn, Reid)

The linear characteristic set is either:

▶ a finite set not containing 0, or

▶ a cofinite set (complement of a finite set) containing 0.

Any set of either of these types is possible.
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Algebraic characteristic sets

The algebraic characteristic set of a matroid M is the set of
characteristics of fields for which it is algebraically realizable.

▶ χL(M) ⊂ χA(M).

▶ If 0 ∈ χA(M), then 0 ∈ χL(M), so χL(M) ⊂ χA(M) are
cofinite.

▶ χA(M) can be empty (Vámos)

▶ χA(M) can be the set of all (positive) primes (Lindström)

▶ χA(M) can be neither finite nor cofinite (Evans-Hrushovski)

Dustin Cartwright Characteristic sets of matroids



Main theorem

Theorem (C.-Varghese)

Let CL ⊂ CA be either finite or cofinite subsets of the set of primes
and 0. Suppose that either 0 ∈ CL,CA and CL is cofinite, or
0 /∈ CL,CA and CL is finite.
Then there exists a matroid M such that χL(M) = CL and
χA(M) = CA.
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Dually: algebraic matroid of a variety

Given x1, . . . , xn ∈ L/K , we can define a prime ideal
J = ker(K [x1, . . . , xn] → L) which defines an irreducible variety
X ⊂ An

K . The independent sets of X are the subsets I such that the
projection πB(V (J)) is dense in AI

K .
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One-dimensional group construction

▶ K : algebraically closed field

▶ G : a 1-dimensional, connected algebraic group over K

▶ E: the ring of endomorphisms of G . If a, b ∈ E, g ∈ G

a · b = a ◦ b (a+ b)(g) = a(g) + b(g)

▶ N ∈ En×d matrix

Then N defines a group homomorphism Gd → Gn:

(g1, . . . , gd) 7→
(
N11(g1)+· · ·+N1d(gd), . . . ,Nn1(g1)+· · ·+Nnd(gd)

)
Then the algebraic matroid of N(Gd) ⊂ Gn is the same as the linear
matroid of the rows of N, over the division ring generated by E.
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1-dimensional connected algebraic groups

Classification of 1-dimensional connected algebraic groups over an
algebraically closed K :

▶ Ga = (K ,+). Endomorphisms: K in characteristic 0, K [F ] in
characteristic p.

▶ Gm = (K \ {0}, ·). Endomorphisms: Z.
▶ E , an elliptic curve. Endomorphisms: Z or maximal order in

imaginary quadratic number field, or (in positive characteristic)
order in quaternion algebra.
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Endomorphisms of Ga

The endomorphisms of Ga are isomorphic to twisted polynomial ring

K [F ] = {anF n + · · ·+ a0 : an, . . . , a0 ∈ K}

with the commutation relation:

Fα = αpF for α ∈ K
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Non-Pappus matroid

The non-Pappus matroid is linear over any non-commutative
division ring, but not over any field.

Therefore, χL(M) = ∅, and by the 1-dimensional group construction,
χA(M) is the set of all primes.
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Evans-Hrushovski

Theorem (Evans-Hrushovski)

Any algebraic realization of the matroid below is equivalent to a
realization by the 1-dimensional group construction.
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Evans-Hrushovski

Theorem (Evans-Hrushovski)

Given a suitable system of equations Φ, there exists a matroid M
such that:

▶ M has a linear realization over K if and only if Φ has solutions
over K .

▶ M has an algebraic realization over K if and only if there exists
a 1-dimensional connected algebraic group G with
endomorphism ring E such that Φ has solutions in the division
ring generated by E
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Other algebraic characteristic sets?

Up to finite difference:

▶ ∅
▶ all primes

▶ For f ∈ Z[x ], the set of primes p such that f does not factor
into linear terms in Fp[x ].

Q: Other possiblities?
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