Conductors and minimal discriminants of hyperelliptic curves

Padmavathi Srinivasan

Georgia Institute of Technology/University of Georgia

Barrett Memorial Lectures, Knoxville
May 29, 2019
What are conductors and minimal discriminants?

Degenerating family of hyperelliptic curves

Measures of degeneracy

Artin conductor

Minimal discriminant

How are these related?

\[y^2 = (x - 1)(x^2 - t) \]

\[y^2 = x^3 - t \]
How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

- If $g = 1$, then $\text{Art}^+(X) = \Delta_X$. [Ogg-Saito formula]
- If $g = 2$, then Liu showed that $\text{Art}^+(X) \leq \Delta_X$. He showed that equality does not always hold.
How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

- If \(g = 1 \), then \(\text{Art}^+ (X) = \Delta_X \). [Ogg-Saito formula]
- If \(g = 2 \), then Liu showed that \(\text{Art}^+ (X) \leq \Delta_X \). He showed that equality does not always hold.

Question: Does \(\text{Art}^+ (X) \leq \Delta_X \) hold for hyperelliptic curves of arbitrary genus \(g \)?

Today:

- Yes, if the residue characteristic is \(> 2g + 1 \). [S.]
- Combinatorial restrictions for equality when \(g \geq 2 \).
- Yes, if the residue characteristic is \(\neq 2 \). [Joint work with Obus]
1 Introduction

2 Definitions

3 Computational tools

4 Proof strategies in examples
\(R \): complete discrete valuation ring
\(K \): fraction field of \(R \)
\(k \): residue field of \(R \), algebraically closed, char \(\neq 2 \)
\(\overline{K} \): a fixed separable closure of \(K \)
\(G_K \): Galois group of \(\overline{K}/K \)
\(\nu \): valuation \(\overline{K} \rightarrow \mathbb{Q} \cup \{ \infty \} \)
\(t \): a uniformizer of \(R \), i.e., \(\nu(t) = 1 \).

Examples: \(\mathbb{C}[[t]] \), \(\mathbb{Z}^{\text{unr}} \)
\(X \): smooth hyperelliptic \(K \)-curve
\(g \): genus of \(X \)
Definition: The minimal discriminant Δ_X of X/K is the nonnegative integer

$$
\Delta_X := \min_{\substack{f(x) \in R[x] \\ y^2 = f(x), \text{ eqn. for } X}} \nu(\text{disc}(f)).
$$

An example: $K = \mathbb{C}((t))$

$C_1: y^2 = x(x - t)(x - 2t)(x - 3t) \leadsto \nu(\text{disc}(f)) = 2\binom{4}{2}$.

$C_2: y'^2 = x'(x' - 1)(x' - 2)(x' - 3) \leadsto \nu(\text{disc}(f)) = 0$.

Here $C_1 \cong_K C_2$ via $x' = \frac{x}{t}, y' = \frac{y}{t^2} \leadsto \Delta_X = 0$.
Fix a prime $\ell \neq \text{char } k$. For any curve C over an algebraically closed field of char $\neq \ell$, let

$$\chi(C) := \sum_{i=0}^{2} (-1)^i \dim H^i_{\text{ét}}(C, \mathbb{Q}_\ell).$$

δ: Swan conductor for the G_K representation $H^1(X_K, \mathbb{Q}_\ell)$ (integer, ≥ 0, measure of wild ramification).

\mathcal{X}^{min}: minimal proper regular R-model of X.

Definition: The Artin conductor $\text{Art}^+(X)$ of X/K is

$$\text{Art}^+(X) := \chi(\mathcal{X}^{\text{min}}_K) - \chi(\mathcal{X}^{\text{min}}_k) + \delta.$$
Properties of the Artin Conductor

- $\text{Art}^+(X)$ is independent of ℓ.
- $\text{Art}^+(X) \geq 0$.
 \[
 \text{Art}^+(X) = 0 \iff X_{\min} \to \text{Spec } R \text{ is smooth or } g = 1 \text{ and } (X_k)_{\text{red}} \text{ is smooth}.
 \]
- Let n be the number of components of X_{\min}^k and let ϵ be the tame conductor for the G_K representation $H^1(X_K, \mathbb{Q}_\ell)$. Then,
 \[
 \text{Art}^+(X) = (n - 1) + \epsilon + \delta.
 \]
- When X_{\min} is regular and semi-stable,
 \[
 \text{Art}^+(X) = \# \text{ singular points of } X_{\min}^k.
 \]
Theorem (S.)

Let K be the fraction field of a Henselian discrete valuation ring. Let X be a smooth hyperelliptic curve over K of genus $g \geq 1$. Assume that the residue characteristic is $> 2g + 1$.

Then,

$$\text{Art}^+(X) \leq \Delta_X.$$
1 Introduction
2 Definitions
3 Computational tools
4 Proof strategies in examples
Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$\text{Art}^+(\mathcal{X}) \leq \Delta_\mathcal{X}.$$
Explicit regular models when char $k \neq 2$

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$\text{Art}^+(X) \leq \text{Art}^+(\mathcal{X}) \leq \Delta_X.$$
Explicit regular models when char $k \neq 2$

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$\text{Art}^+(X) \leq \text{Art}^+(\mathcal{X}) \leq \Delta_X.$$

Two reasons for non regular Weierstrass models:

- Components of div $f \subset \mathbb{P}^1_R$ intersect.
 (Example: $K = \mathbb{C}((t))$, $y^2 = x(x - t)(x - 1)$.)

- Components of div $f \subset \mathbb{P}^1_R$ are not regular curves.
 (Example: $K = \mathbb{C}((t))$, $y^2 = x^3 - t^2$.)
Explicit regular models when char \(k \neq 2 \)

Remark: Suffices to find ONE proper regular model \(\mathcal{X} \) such that

\[
\text{Art}^+(X) \leq \text{Art}^+(\mathcal{X}) \leq \Delta_X.
\]

Two reasons for non regular Weierstrass models:

- Components of \(\text{div} \, f \subset \mathbb{P}^1_R \) intersect.

 (Example: \(K = \mathbb{C}((t)), \ y^2 = x(x - t)(x - 1) \).)

- Components of \(\text{div} \, f \subset \mathbb{P}^1_R \) are not regular curves.

 (Example: \(K = \mathbb{C}((t)), \ y^2 = x^3 - t^2 \).)

Solution: Blow-up \(\mathbb{P}^1_R \) first \textit{before} taking a double cover.
Lemma

Let $\text{Bl}\ \mathbb{P}^1_R$ be an arithmetic surface birational to \mathbb{P}^1_R. Let f be an element of the function field of \mathbb{P}^1_R. Assume that the odd multiplicity components of the divisor of f on $\text{Bl}\ \mathbb{P}^1_R$ are disjoint and regular. Then, the normalization of $\text{Bl}\ \mathbb{P}^1_R$ in $K(x, \sqrt{f(x)})$ is a proper regular model for the hyperelliptic curve given by $y^2 = f(x)$.

Explicit regular model:

Let $y^2 = f(x)$ be an equation for X with $f(x) \in R[x]$ and $\Delta_X = \Delta_f$. Let $\text{Bl}\ \mathbb{P}^1_R$ be the (minimal) blowup of \mathbb{P}^1_R satisfying the conditions above and X_f the associated proper regular model of X.

Explicit regular models when char $k \neq 2$
Lemma

Let $\text{Bl } \mathbb{P}^1_R$ be an arithmetic surface birational to \mathbb{P}^1_R. Let f be an element of the function field of \mathbb{P}^1_R. Assume that the odd multiplicity components of the divisor of f on $\text{Bl } \mathbb{P}^1_R$ are disjoint and regular.

Then, the normalization of $\text{Bl } \mathbb{P}^1_R$ in $K(x, \sqrt{f(x)})$ is a proper regular model for the hyperelliptic curve given by $y^2 = f(x)$.

Explicit regular model:

Let $y^2 = f(x)$ be an equation for X with $f(x) \in R[x]$ and $\Delta_X = \Delta_f$.

Let $\text{Bl } \mathbb{P}^1_R$ be the (minimal) blowup of \mathbb{P}^1_R satisfying the conditions above and X_f the associated proper regular model of X.

Explicit regular models when char $k \neq 2$
Riemann-Hurwitz formula: If $\mathcal{X} \to \mathcal{Y}$ is a double cover of arithmetic surfaces, branched over the divisor B, then,

$$\text{Art}^+(\mathcal{X}) = [2\chi(\mathcal{Y}_k) - \chi(B_k)] - [2\chi(\mathcal{Y}_\overline{K}) - \chi(B_{\overline{K}})] + \delta.$$

Inclusion-exclusion/additivity for χ (good for induction!).
Computational tools

- Riemann-Hurwitz formula: If $\mathcal{X} \to \mathcal{Y}$ is a double cover of arithmetic surfaces, branched over the divisor B, then,

$$\text{Art}^+(\mathcal{X}) = [2\chi(\mathcal{Y}_k) - \chi(B_k)] - [2\chi(\mathcal{Y}_K) - \chi(B_K)] + \delta.$$

- Inclusion-exclusion/additivity for χ (good for induction!).

Additional tools:

<table>
<thead>
<tr>
<th>char $k > 2g + 1$</th>
<th>char $k \neq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\to \delta = 0$</td>
<td>$\to \delta$</td>
</tr>
<tr>
<td>Roots of f</td>
<td>Explicit formula for δ</td>
</tr>
<tr>
<td>Metric tree of f</td>
<td>Maclane valuations</td>
</tr>
<tr>
<td>Induction on the metric tree</td>
<td>and approximate roots</td>
</tr>
<tr>
<td>Abhyankar’s Inversion formula</td>
<td></td>
</tr>
</tbody>
</table>

Key inductive inequality:

$$\Delta_f - \Delta_{f_{\text{new}}} = n(n - 1) \geq 2 = \text{Art}^+(\mathcal{X}_f) - \text{Art}^+(\mathcal{X}_{f_{\text{new}}}) \quad (\because n \geq 2).$$
1. Introduction
2. Definitions
3. Computational tools
4. Proof strategies in examples
Roots of $f \sim \text{Metric tree of } f$

$t^{2/3} + t^{5/6}, t^{2/3} - t^{5/6},$
$
\omega t^{2/3} - \omega^2 t^{5/6}, \omega t^{2/3} + \omega^2 t^{5/6},$
$
\omega^2 t^{2/3} + \omega t^{5/6}, \omega^2 t^{2/3} - \omega t^{5/6}$
Inductive process on metric trees using Abhyankar’s inversion formula

(In the example below, \(a = 2, b = 3 \).)

\(b \) identical subtrees \(\rightsquigarrow \) \(a \) identical subtrees.

distance \(a/b \) from \(\eta \) \(\rightsquigarrow \) distance \((b/a) - 1 \) from \(\eta \).

New subtree metric \(= (\text{Old subtree metric}) \cdot b/a \).
Proof in an easy example, \(K = \mathbb{C}((t)) \)

\[
f(x) = x(x - 1 - t)(x - 1 - 2t)(x - 1 - 3t)(x - 1 - 4t)
\]

\[
f^{\text{new}}(x) = (x - 1)(x - 2)(x - 3)(x - 4)
\]

\[
\text{Art}^+(X_f) - \text{Art}^+(X_{f^{\text{new}}}) = 2.
\]

\[
\Delta_f - \Delta_{f^{\text{new}}} = 2\binom{4}{2} = 12.
\]

\[
\text{Art}^+(X_{f^{\text{new}}}) = \Delta_{f^{\text{new}}} = 0.
\]
Examples where $\delta \neq 0$

Let $K = \hat{\mathbb{Q}}_{p}^{\text{unr}}$, p odd.

\[
y^2 = x^p - p
\]

Weierstrass model is regular!

\[
\text{Art} + (X) = 2 \chi(Y) - 2 \chi(Y_K) - \delta = p - 1 + \delta = \Delta_K(p_{1/p})/K + 1 = \Delta_f - 2 \nu p_{2/p}.
\]
Examples where $\delta \neq 0$

Let $K = \widehat{\mathbb{Q}}_p^\text{unr}$, p odd.

\[y^2 = x^p - p \]

- Weierstrass model is regular!
- $\text{Art}^+(X) = [2\chi(\mathcal{Y}_k) - 2\chi(\mathcal{Y}_K)] - [\chi(B_k) - \chi(B_K)] + \delta = p - 1 + \delta$
- $\delta = \Delta_{K(p^{1/p})/K} - [K(p^{1/p}) : K] + 1 = \Delta_f - p + 1$.

\[y^2 = x^p - p^2 \]
Examples where $\delta \neq 0$

Let $K = \hat{\mathbb{Q}}_{p}^{unr}$, p odd.

$y^2 = x^p - p$

- Weierstrass model is regular!
- $\text{Art}^+ (X) = [2\chi(\mathcal{Y}_K) - 2\chi(\mathcal{Y}_K^\vee)] - [\chi(B_K) - \chi(B_K^\vee)] + \delta = p - 1 + \delta$
- $\delta = \Delta_{K(p^{1/p}/K) - [K(p^{1/p}/K) : K]} + 1 = \Delta_f - p + 1$.

$y^2 = x^p - p^2$

- $\delta = \Delta_{K(p^{2/p}/K) - [K(p^{2/p}/K) : K]} + 1$
 - $= \Delta_{K(p^{1/p}/K) - [K(p^{1/p}/K) : K]} + 1$
 - $= \Delta_f - 2(\nu_p(p^{2/p}) - \nu_p(p^{1/p}))(p^2) - p + 1$
 - $= \Delta_f - 2(p - 1)$.
Examples where $\delta \neq 0$

Let $K = \overline{\mathbb{Q}_p}^{unr}$, p odd.

\[y^2 = x^p - p \]

- Weierstrass model is regular!
- $\text{Art}^+(X) = [2\chi(\mathcal{Y}_k) - 2\chi(\mathcal{Y}_{K^1_k})] - [\chi(B_k) - \chi(B_{K^1})] + \delta = p - 1 + \delta$
- $\delta = \Delta_{K(p^1/p)/K} - [K(p^1/p) : K] + 1 = \Delta_f - p + 1$.

\[y^2 = x^p - p^2 \]

- Weierstrass model is not regular! Need $(p - 1)/2$ blowups of \mathbb{P}^1_R.
- $\delta = \Delta_{K(p^2/p)/K} - [K(p^2/p) : K] + 1$
 $= \Delta_{K(p^1/p)/K} - [K(p^1/p) : K] + 1$
 $= \Delta_f - 2\left(\nu_p(p^2/p) - \nu_p(p^1/p)\right)(\frac{p}{2}) - p + 1$
 $= \Delta_f - 2(p - 1)$.
Examples where $\delta \neq 0$

Let $K = \hat{Q}_p^{unr}$, p odd.

$y^2 = x^p - p$

- Weierstrass model is regular!
- $\text{Art}^+(X) = [2\chi(Y_k) - 2\chi(Y_K)] - [\chi(B_k) - \chi(B_K)] + \delta = p - 1 + \delta$
- $\delta = \Delta_{K(p^{1/p})/K} - [K(p^{1/p}) : K] + 1 = \Delta_f - p + 1$.

$y^2 = x^p - p^2$

- Weierstrass model is not regular! Need $(p - 1)/2$ blowups of \mathbb{P}^1_R.
- $\text{Art}^+(X) = 2(p - 1) + \delta$
- $\delta = \Delta_{K(p^{2/p})/K} - [K(p^{2/p}) : K] + 1$
 $= \Delta_{K(p^{1/p})/K} - [K(p^{1/p}) : K] + 1$
 $= \Delta_f - 2 (\nu_p(p^{2/p}) - \nu_p(p^{1/p}))(\frac{p}{2}) - p + 1$
 $= \Delta_f - 2(p - 1)$.
Finally . . .

Thank you!