a-Numbers of Curves in Artin-Schreier Covers

Jeremy Booher

University of Arizona

May 28, 2019
The Riemann-Hurwitz Formula

Figure: The elliptic curve $y^2 = x^3 - x$
Degree 2 cover of \mathbb{P}^1, Ramified above 0, 1, -1, ∞. Genus 1
Consider the curve X defined by $y^5 - y = x^3$ defined over $k = F_5$.

- Artin-Schreier extension of function fields:

$$k(X) = k(x)[y]/(y^5 - y - x^3)$$
Consider the curve \(X \) defined by \(y^5 - y = x^3 \) defined over \(k = \mathbb{F}_5 \).

- Artin-Schreier extension of function fields:
 \[
 k(X) = k(x)[y]/(y^5 - y - x^3)
 \]

- Degree 5 map \(\pi : X \to \mathbb{P}^1_k \) ramified at infinity.

- \(d = 3 \) is the unique break in the lower ramification filtration above infinity. Also the order of the pole of \(x^3 \) at infinity.
Consider the curve X defined by $y^5 - y = x^3$ defined over $k = \mathbb{F}_5$.

- Artin-Schreier extension of function fields:

 $$k(X) = k(x)[y]/(y^5 - y - x^3)$$

- Degree 5 map $\pi : X \to \mathbb{P}^1_k$ ramified at infinity.

- $d = 3$ is the unique break in the lower ramification filtration above infinity. Also the order of the pole of x^3 at infinity.

- Riemann-Hurwitz says that

 $$2g_X - 2 = 5(2g_{\mathbb{P}^1_k} - 2) + (d + 1)(5 - 1)$$

 i.e. that $g_X = 4$.

Jeremy Booher

a-Numbers of Curves in Artin-Schreier Covers
Consider a smooth projective curve X over a finite field k of characteristic p.

- The genus of X is $\dim_k H^0(X, \Omega^1_X)$.

In characteristic p, there is additional structure not present in characteristic 0: a semilinear operator $V_X: H^0(X, \Omega^1_X) \to H^0(X, \Omega^1_X)$ known as the Cartier operator. Easy to calculate with the Cartier operator:

$$V_X(\sum_i a_i t^{i} dt) = \sum_j a_1^{i/p} t^{j/p} dt.$$
Consider a smooth projective curve X over a finite field k of characteristic p.

- The genus of X is $\dim_k H^0(X, \Omega_X^1)$.
- In characteristic p, there is additional structure not present in characteristic 0: a semilinear operator

$$V_X : H^0(X, \Omega_X^1) \to H^0(X, \Omega_X^1)$$

known as the Cartier operator.
Invariants in Characteristic p

Consider a smooth projective curve X over a finite field k of characteristic p.

- The genus of X is $\dim_k H^0(X, \Omega_X^1)$.
- In characteristic p, there is additional structure not present in characteristic 0: a semilinear operator

$$V_X : H^0(X, \Omega_X^1) \to H^0(X, \Omega_X^1)$$

known as the Cartier operator.
- Easy to calculate with the Cartier operator:

$$V_X \left(\sum_i a_i t^i \frac{dt}{t} \right) = \sum_j a_{pj}^{1/p} t^j \frac{dt}{t}.$$
Other Invariants in Characteristic p

Based on the Cartier operator V_X, decompose

$$H^0(X, \Omega^1_X) = H^0(X, \Omega^1_X)^{bij} \oplus H^0(X, \Omega^1_X)^{nilp}$$
Other Invariants in Characteristic p

Based on the Cartier operator V_X, decompose

$$H^0(X, \Omega_X^1) = H^0(X, \Omega_X^1)^{\text{bij}} \oplus H^0(X, \Omega_X^1)^{\text{nilp}}$$

Definition

The p-rank of X, denoted f_X, is $\dim_k H^0(X, \Omega_X^1)^{\text{bij}}$.

Definition

The a-number of X, denoted a_X, is $\dim_k \ker V_X$.
Simple Examples

Example
An ordinary elliptic curve has p-rank 1 and a-number 0.

Example
A supersingular elliptic curve has p-rank 0 and a-number 1.
Simple Examples

Example
An ordinary elliptic curve has \(p\)-rank 1 and \(a\)-number 0.

Example
A supersingular elliptic curve has \(p\)-rank 0 and \(a\)-number 1.

Example
\(y^5 - y = x^3 \) over \(\mathbb{F}_5 \): genus 4, \(p\)-rank 0, \(a\)-number 4.
The Deuring-Schafarevich formula computes p-rank for extension of degree p in terms of ramification information.
The Deuring-Schafarevich formula computes p-rank for extension of degree p in terms of ramification information.

Two $\mathbb{Z}/5\mathbb{Z}$-covers of \mathbb{P}^1 with the same ramification information:

Example

$y^5 - y = x^3$ over \mathbb{F}_5: genus 4, p-rank 0, a-number 4.

Example

$y^5 - y = x^3 + x^2$ over \mathbb{F}_5: genus 4, p-rank 0, a-number 3.
Let X be a curve of genus g_X, so $\text{Jac}(X)$ is an Abelian variety of dimension g_X.
Let X be a curve of genus g_X, so $\text{Jac}(X)$ is an Abelian variety of dimension g_X.

- $\text{Jac}(X)[p]$ is a group scheme of order p^{2g_X}.
Let X be a curve of genus g_X, so $\text{Jac}(X)$ is an Abelian variety of dimension g_X.

- $\text{Jac}(X)[p]$ is a group scheme of order p^{2g_X}.

- $f_X = \dim_{F_p} \text{Hom}_k(\mu_p, \text{Jac}(X)[p])$

- $a_X = \dim_{F_p} \text{Hom}_k(\alpha_p, \text{Jac}(X)[p])$
Let X be a curve of genus g_X, so $\text{Jac}(X)$ is an Abelian variety of dimension g_X.

- $\text{Jac}(X)[p]$ is a group scheme of order p^{2g_X}.
- $f_X = \dim_{F_p} \text{Hom}_{\overline{k}}(\mu_p, \text{Jac}(X)[p])$
- $a_X = \dim_{F_p} \text{Hom}_{\overline{k}}(\alpha_p, \text{Jac}(X)[p])$

The connection between $\text{Jac}(X)[p]$ and these invariants comes from relating the Dieudonné module and de Rham cohomology.
Invariants of the Jacobian

If E is an elliptic curve, $E \cong \text{Jac}(E)$.

Example

If E is an ordinary, p-rank is one and a-number is zero, while

$$E[p] = \mu_p \times \mathbb{Z}/p\mathbb{Z}.$$
Invariants of the Jacobian

If E is an elliptic curve, $E \cong \text{Jac}(E)$.

Example

If E is an ordinary, p-rank is one and a-number is zero, while

$$E[p] = \mu_p \times \mathbb{Z}/p\mathbb{Z}.$$

Example

If E is a supersingular, p-rank is 0 and a-number is one, while

$$0 \to \alpha_p \to E[p] \to \alpha_p \to 0.$$
The Igusa Tower

Let X_n be nth Igusa curve in characteristic p: moduli space of elliptic curves with level p^n Igusa structure.

They form a \mathbb{Z}_p-tower

$$\cdots \rightarrow X_3 \rightarrow X_2 \rightarrow X_1.$$
Let X_n be nth Igusa curve in characteristic p: moduli space of elliptic curves with level p^n Igusa structure.

They form a \mathbb{Z}_p-tower

$$\ldots \to X_3 \to X_2 \to X_1.$$

Using ramification information worked out by Katz and Mazur:

- $g_{X_n} = c_1 p^{2n} + c_2 p^n + c_3$ (Riemann-Hurwitz)
- $f_{X_n} = c_4 (p^n - 1)$ (Deuring-Shafarevich)
- $\frac{1}{2} + O(p^{-1}) \leq \frac{a_{X_n}}{g_{X_n}} \leq \frac{2}{3} + O(p^{-1})$ (our results)
Consider a “nice” \mathbb{Z}_p-tower of curves

$$\ldots \rightarrow X_3 \rightarrow X_2 \rightarrow X_1.$$

Question

Is the growth of a_{X_n} regular? (for genus stable towers?)
Motivation: \(\mathbb{Z}_p \)-towers and Iwasawa Theory

Consider a “nice” \(\mathbb{Z}_p \)-tower of curves

\[\ldots \to X_3 \to X_2 \to X_1. \]

Question

Is the growth of \(a_{X_n} \) regular? (for genus stable towers?)

Studying invariants of \(\text{Jac}(X_n)[p] \) like genus or \(a \)-number is a geometric analog of Iwasawa theory.
Theorem (B-Cais)

Let $\pi : Y \rightarrow X$ be a $\mathbb{Z}/p\mathbb{Z}$-cover of curves in characteristic p with branch locus $S \subseteq X(\bar{k})$. For $Q \in S$ let d_Q be the unique break in the lower-numbering ramification filtration at the unique point of Y over Q. Then for any $1 \leq j \leq p - 1$,

$$\sum_{Q \in S} p - 1 \sum_{i=1}^{j} (\lfloor i d_Q \rfloor - (p - i) \lfloor i^2 d_Q \rfloor) \leq a_Y \quad \text{and} \quad a_Y \leq pa_X + \sum_{Q \in S} p - 1 \sum_{i=1}^{j} (\lfloor i d_Q \rfloor - (p - i) \lfloor i^2 d_Q \rfloor).$$
Theorem (B-Cais)

Let \(\pi : Y \to X \) be a \(\mathbb{Z}/p\mathbb{Z} \)-cover of curves in characteristic \(p \) with branch locus \(S \subseteq X(\overline{k}) \). For \(Q \in S \) let \(d_Q \) be the unique break in the lower-numbering ramification filtration at the unique point of \(Y \) over \(Q \). Then for any \(1 \leq j \leq p - 1 \),

\[
\sum_{Q \in S} \sum_{i=j}^{p-1} \left(\left\lfloor \frac{id_Q}{p} \right\rfloor - \left\lfloor \frac{id_Q}{p} \right\rfloor - \left(1 - \frac{1}{p} \right) \frac{j d_Q}{p^2} \right) \leq a_Y
\]

and

\[
a_Y \leq p a_X + \sum_{Q \in S} \sum_{i=1}^{p-1} \left(\left\lfloor \frac{id_Q}{p} \right\rfloor - (p - i) \left\lfloor \frac{id_Q}{p^2} \right\rfloor \right).
\]
When $\sum_{Q \in S} d_Q = T$ is large, take $j \approx p/2$ and approximate:

- lower bound $\approx \frac{pT}{4}$
- upper bound $\approx \frac{pT}{3}$
Estimates on the Bounds

When $\sum_{Q \in S} d_Q = T$ is large, take $j \approx p/2$ and approximate:

- lower bound $\approx \frac{pT}{4}$
- upper bound $\approx \frac{pT}{3}$

In contrast,

$\text{genus} \approx \frac{pT}{2}$.
$\pi : Y \rightarrow X$ a $\mathbb{Z}/p\mathbb{Z}$-cover ramified over S

Corollary

Suppose p is odd. If $a_X = 0$ and $d_Q \mid p - 1$ for every $Q \in S$, the upper and lower bounds match, giving an explicit formula for a_Y.

Recovers a result of Shawn Farnell and Rachel Pries when $X = \mathbb{P}^1_k$.

Jeremy Booher

a-Numbers of Curves in Artin-Schreier Covers
Invariants of Curves
Motivation
Artin-Schreier Covers

Special Cases

\(\pi : Y \rightarrow X \) a \(\mathbb{Z}/p\mathbb{Z} \)-cover ramified over \(S \)

Corollary

Suppose \(p \) is odd. If \(a_X = 0 \) and \(d_Q \mid p - 1 \) for every \(Q \in S \), the upper and lower bounds match, giving an explicit formula for \(a_Y \).

Recovers a result of Shawn Farnell and Rachel Pries when \(X = \mathbb{P}^1_k \).

Corollary

Suppose \(p = 2 \). If \(a_X = 0 \), the upper and lower bounds match, giving an explicit formula for \(a_Y \).

Recovers a result of Felipe Voloch.
Invariants of Curves

Motivation

Artin-Schreier Covers

When are the Bounds Sharp?

Example

Consider $y^p - y = x^d$ (cover of \mathbb{P}^1 ramified at infinity). The a-number is our upper bound.
When are the Bounds Sharp?

Example

Consider $y^p - y = x^d$ (cover of \mathbb{P}^1 ramified at infinity). The a-number is our upper bound.

Theorem (B-Pries)

Let $p = 3$ and X be a curve with $a_X = 0$. There exists a $\mathbb{Z}/p\mathbb{Z}$-cover of X with any specified $S \subset X(\overline{k})$ and d_Q for $Q \in S$ with minimal a-number.

Relies on building basic covers of \mathbb{P}^1 ramified only at infinity with minimal a-number.
Let $k = \mathbb{F}_5$. Consider Artin-Schreier covers $\pi : Y \to \mathbb{P}^1_k$ that are ramified only above infinity with ramification invariant $d = 11$. Our bounds give:

$$10 \leq a_Y \leq 14.$$
Let $k = \mathbb{F}_5$. Consider Artin-Schreier covers $\pi : Y \to \mathbb{P}^1_k$ that are ramified only above infinity with ramification invariant $d = 11$. Our bounds give:

$$10 \leq a_Y \leq 14.$$

<table>
<thead>
<tr>
<th>a_X</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8021</td>
</tr>
<tr>
<td>11</td>
<td>1901</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure: a-numbers of 10000 random covers
Let $k = \mathbb{F}_7$ and X be the supersingular elliptic curve $y^2 = x^3 - x$. Consider Artin-Schreier covers $\pi : Y \to X$ that are ramified only above the point at infinity with ramification invariant $d = 6$. Our bounds give:

$$9 \leq a_Y \leq 16.$$

<table>
<thead>
<tr>
<th>a_X</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>86436</td>
</tr>
<tr>
<td>11</td>
<td>11760</td>
</tr>
<tr>
<td>12</td>
<td>2562</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>84</td>
</tr>
</tbody>
</table>

Figure: a-numbers of all such covers
Let $\pi : Y \to X$ be ramified over S and η be the generic point of X.

For a differential ω on Y, writing $\omega = \sum_{i=0}^{p-1} \omega_i y^i$ gives

$$(\pi_* \Omega^1_Y)_{\eta} = \bigoplus_{i=0}^{p-1} (\Omega^1_X)_{\eta}, \quad \pi_* \Omega^1_Y = \bigoplus_{i=0}^{p-1} \Omega^1_X(E_i)$$

where E_i are explicit divisors supported on S.
Let $\pi : Y \to X$ be ramified over S and η be the generic point of X

For a differential ω on Y, writing $\omega = \sum_{i=0}^{p-1} \omega_i y^i$ gives

$$(\pi_* \Omega^1_Y)_\eta = \bigoplus_{i=0}^{p-1} (\Omega^1_X)_\eta,$$

$$(\pi_* \Omega^1_Y) \cong \bigoplus_{i=0}^{p-1} \Omega^1_X(E_i),$$

where E_i are explicit divisors supported on S.

$$(\pi_* \ker V_Y)_\eta \cong \bigoplus_{i=0}^{p-1} (\ker V_X)_\eta$$

$$(\pi_* \ker V_Y) \hookrightarrow \bigoplus_{i=0}^{p-1} \ker V_X(F_* E_i).$$
An Approach to a Proof

Let \(\pi : Y \to X \) be ramified over \(S \) and \(\eta \) be the generic point of \(X \). For a differential \(\omega \) on \(Y \), writing \(\omega = \sum_{i=0}^{p-1} \omega_i y^i \) gives

\[
(\pi_* \Omega^1_Y)_\eta = \bigoplus_{i=0}^{p-1} (\Omega^1_X)_\eta, \quad \pi_* \Omega^1_Y = \bigoplus_{i=0}^{p-1} \Omega^1_X(E_i)
\]

where \(E_i \) are explicit divisors supported on \(S \).

\[
(\pi_* \ker V_Y)_\eta \cong \bigoplus_{i=0}^{p-1} (\ker V_X)_\eta \quad \varphi : (\pi_* \ker V_Y) \hookrightarrow \bigoplus_{i=0}^{p-1} \ker V_X(F_*E_i).
\]

The key is analyzing this last map using local methods.
Let $p = 5$, and consider covers X_1, X_2 of \mathbb{P}^1 given by

\[y^5 - y = \begin{cases} \ x^{-3} & \text{or} \\ x^{-3} + x^{-2} \end{cases} \]

Bounds: $3 \leq a_{X_i} \leq 4$
An Example

Let $p = 5$, and consider covers X_1, X_2 of \mathbb{P}^1 given by

$$y^5 - y = \begin{cases} x^{-3} & \text{or} \\ x^{-3} + x^{-2} \end{cases}$$

Bounds: $3 \leq a_{X_i} \leq 4$

$$\varphi : (\pi_* \ker V_Y) \to \bigoplus_{i=0}^{p-1} \ker V_X(F_* E_i)$$

Based on the defining equation, compute that

$$\varphi^{-1}_\eta((0, 0, x^{-2} dx, 0, 0)) = \begin{cases} x^{-2} dxy^2 \\ x^{-6} dx + x^{-2} dxy^2 \end{cases}$$
Thank you.