All vector spaces are assumed to be finite dimensional.

1. Suppose that \(\{v_1, \ldots, v_m\} \) is a linearly independent subset of the vector space \(V \), and that \(w \in V \). Show that the span of \(\{v_1 + w, \ldots, v_m + w\} \) has dimension at least \(m - 1 \).

2. Let \(A \) be a \(4 \times 4 \) matrix with entries in the complex numbers, satisfying \(A \neq 0, A^2 = 0 \). Determine the possible Jordan canonical forms for \(A \).

3. Suppose that \(U, W \) are both 4-dimensional subspaces of \(\mathbb{C}^6 \). Prove that there exist two vectors in \(U \cap W \) such that neither of these vectors is a scalar multiple of the other.

4. Let \(T : V \to V \) be an invertible linear transformation. Prove that a vector \(v \in V \) is an eigenvector of \(T \) if and only if it is an eigenvector of \(T^{-1} \).

5. Let \(T : \mathbb{C}^3 \to \mathbb{C}^3 \) be a linear transformation with eigenvalues 2, 3, 5. Show that there exists a linear transformation \(S : \mathbb{C}^3 \to \mathbb{C}^3 \) with \(S^2 = T \).

6. A linear map \(T : \mathbb{C}^3 \to \mathbb{C}^3 \) is defined by \(T(z_1, z_2, z_3) = (2z_2, 0, 3z_1) \). Prove that \(T \) does not have a square root, i.e. show that there does not exist a linear map \(S : \mathbb{C}^3 \to \mathbb{C}^3 \) such that \(S^2 = T \).