The first Szegö theorem of Toeplitz operators on Bergman spaces

Ziliang Zhang

Vanderbilt University
Joint work with X. Zhao and D. Zheng

March 17, 2017, SEAM
Let \(T \) be the unit circle and \(L^2(T) \) be the Hilbert space of square-integrable functions.
Let \mathbb{T} be the unit circle and $L^2(\mathbb{T})$ be the Hilbert space of square-integrable functions. The Hardy space H^2 is a closed subspace of $L^2(\mathbb{T})$ consisting of functions whose Fourier coefficients with negative subscripts are all zero.
Let \mathbb{T} be the unit circle and $L^2(\mathbb{T})$ be the Hilbert space of square-integrable functions. The Hardy space H^2 is a closed subspace of $L^2(\mathbb{T})$ consisting of functions whose Fourier coefficients with negative subscripts are all zero. The Toeplitz operator T_f with a bounded symbol f on H^2 is defined by

$$T_f(g) = P(fg)$$

where P is the orthogonal projection from $L^2(\mathbb{T})$ to H^2.

Ziliang Zhang

The first Szegö theorem of Toeplitz operators on Bergman spaces
Matrix representations of Hardy Toeplitz operators

Let \(f(z) = \sum_{k=-\infty}^{+\infty} c_k z^k \in L^\infty(\mathbb{T}) \).
Let \(f(z) = \sum_{k=-\infty}^{+\infty} c_k z^k \in L^\infty(\mathbb{T}) \).

\(T_f \) has a matrix representation under an orthonormal basis \(\{ z^n \} \) of \(H^2 \) as

\[
T_f = \begin{bmatrix}
c_0 & c_{-1} & c_{-2} & c_{-3} & \cdots \\
c_1 & c_0 & c_{-1} & c_{-2} & \cdots \\
c_2 & c_1 & c_0 & c_{-1} & \cdots \\
c_3 & c_2 & c_1 & c_0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{bmatrix}.
\]
The upper left corner

\[T_n[f] = \begin{bmatrix}
 c_0 & c_{-1} & c_{-2} & \cdots & c_{-n} \\
 c_1 & c_0 & c_{-1} & \cdots & c_{-n+1} \\
 c_2 & c_1 & c_0 & \cdots & c_{-n+2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 c_n & c_{n-1} & c_{n-2} & \cdots & c_0
\end{bmatrix}. \]
Hardy Toeplitz matrices

The upper left corner

\[
\begin{bmatrix}
 c_0 & c_{-1} & c_{-2} & \cdots & c_{-n} \\
 c_1 & c_0 & c_{-1} & \cdots & c_{-n+1} \\
 c_2 & c_1 & c_0 & \cdots & c_{-n+2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 c_n & c_{n-1} & c_{n-2} & \cdots & c_0 \\
\end{bmatrix}
\]

We call \(T_n[f] \) the Hardy Toeplitz matrix.
The upper left corner

\[T_n[f] = \begin{bmatrix} c_0 & c_{-1} & c_{-2} & \cdots & c_{-n} \\ c_1 & c_0 & c_{-1} & \cdots & c_{-n+1} \\ c_2 & c_1 & c_0 & \cdots & c_{-n+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n-1} & c_{n-2} & \cdots & c_0 \end{bmatrix}. \]

We call \(T_n[f] \) the Hardy Toeplitz matrix.
Denote \(\mathbb{D}_n[f] = \det T_n[f] \).
First Szegö theorem of Hardy Toeplitz operators

The asymptotic behavior of $D_n[f]$ was first described by Szegö in 1919, as the first Szegö theorem.
First Szegö theorem of Hardy Toeplitz operators

The asymptotic behavior of $\mathbb{D}_n[f]$ was first described by Szegö in 1919, as the first Szegö theorem. One version given by Widom (translated to scalar-valued case):

Theorem (Szegö-Widom, 1976)

If $f \in H^\infty + C(\mathbb{T})$ and T_f is invertible on H^2, then

$$\lim_{n \to +\infty} \frac{\mathbb{D}_n[f]}{\mathbb{D}_{n-1}[f]} = G[f].$$
The asymptotic behavior of $\mathbb{D}_n[f]$ was first described by Szegö in 1919, as the first Szegö theorem. One version given by Widom (translated to scalar-valued case):

Theorem (Szegö–Widom, 1976)

If $f \in H^\infty + C(\mathbb{T})$ and T_f is invertible on H^2, then

$$\lim_{n \to +\infty} \frac{\mathbb{D}_n[f]}{\mathbb{D}_{n-1}[f]} = G[f].$$

Here, $G[f]$ is the geometric mean of f as

$$G[f] = \lim_{r \to 1} \exp \left[\frac{1}{2\pi} \int_{0}^{2\pi} \ln \hat{f}(r e^{i\theta}) d\theta \right],$$

where \hat{f} is the harmonic extension of f.
Let \mathbb{D} be the unit disk and dA be the normalized Lebesgue measure on \mathbb{D}. Let $L^2(\mathbb{D}, dA)$ be the Hilbert space of square-integrable functions on \mathbb{D}.
Let \mathbb{D} be the unit disk and dA be the normalized Lebesgue measure on \mathbb{D}. Let $L^2(\mathbb{D}, dA)$ be the Hilbert space of square-integrable functions on \mathbb{D}. The Bergman space L^2_a is a closed subspace of $L^2(\mathbb{D}, dA)$ consisting of analytic functions on \mathbb{D}.

Ziliang Zhang
Let \mathbb{D} be the unit disk and dA be the normalized Lebesgue measure on \mathbb{D}. Let $L^2(\mathbb{D}, dA)$ be the Hilbert space of square-integrable functions on \mathbb{D}. The Bergman space L^2_a is a closed subspace of $L^2(\mathbb{D}, dA)$ consisting of analytic functions on \mathbb{D}. The Toeplitz operator T_f with a bounded symbol f on L^2_a is defined by

$$T_f(g) = P(fg)$$

where P is the orthogonal projection from $L^2(\mathbb{D}, dA)$ to L^2_a.
Matrix representations of Bergman Toeplitz operators with harmonic symbols

Let \(f(z) = \sum_{k=-\infty}^{+\infty} c_k z^k \in L^\infty(\mathbb{T}) \).
Matrix representations of Bergman Toeplitz operators with harmonic symbols

Let $f(z) = \sum_{k=-\infty}^{+\infty} c_k z^k \in L^\infty(\mathbb{T})$. Then $\hat{f} = \sum_{k=0}^{+\infty} c_k z^k + \sum_{k=1}^{+\infty} c_k \bar{z}^k$.
Matrix representations of Bergman Toeplitz operators with harmonic symbols

Let \(f(z) = \sum_{k=-\infty}^{+\infty} c_k z^k \in L^\infty(\mathbb{T}) \). Then \(\hat{f} = \sum_{k=0}^{+\infty} c_k z^k + \sum_{k=1}^{+\infty} c_k \bar{z}^k \).

\(T_{\hat{f}} \) has a matrix representation under an orthonormal basis \(\{ e_n = \sqrt{n+1} z^n \}_{n=0}^{+\infty} \) of \(L^2_a \),

\[
T_{\hat{f}} = \begin{bmatrix}
c_0 & \sqrt{\frac{1}{2}} c_{-1} & \sqrt{\frac{1}{3}} c_{-2} & \sqrt{\frac{1}{4}} c_{-3} & \cdots \\
\sqrt{\frac{1}{2}} c_1 & c_0 & \sqrt{\frac{2}{3}} c_{-1} & \sqrt{\frac{2}{4}} c_{-2} & \cdots \\
\sqrt{\frac{1}{3}} c_2 & \sqrt{\frac{2}{3}} c_{-1} & c_0 & \sqrt{\frac{3}{4}} c_{-1} & \cdots \\
\sqrt{\frac{1}{4}} c_3 & \sqrt{\frac{2}{4}} c_{-2} & \sqrt{\frac{3}{4}} c_{-1} & c_0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}.
\]
Bergman Toeplitz matrices

The upper left corner

\[T_n[\hat{f}] = \begin{bmatrix}
 c_0 & \sqrt{\frac{1}{2}} c_{-1} & \sqrt{\frac{1}{3}} c_{-2} & \cdots & \sqrt{\frac{1}{n+1}} c_{-n} \\
 \sqrt{\frac{1}{2}} c_1 & c_0 & \sqrt{\frac{2}{3}} c_{-1} & \cdots & \sqrt{\frac{2}{n+1}} c_{-n+1} \\
 \sqrt{\frac{1}{3}} c_2 & \sqrt{\frac{2}{3}} c_1 & c_0 & \cdots & \sqrt{\frac{3}{n+1}} c_{-n+2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \sqrt{\frac{1}{n+1}} c_n & \sqrt{\frac{2}{n+1}} c_{n-1} & \sqrt{\frac{3}{n+1}} c_{n-2} & \cdots & c_0
\end{bmatrix}. \]
The upper left corner

\[
T_n[\hat{f}] = \begin{bmatrix}
 c_0 & \sqrt{\frac{1}{2}} c_{-1} & \sqrt{\frac{1}{3}} c_{-2} & \cdots & \sqrt{\frac{1}{n+1}} c_{-n} \\
 \sqrt{\frac{1}{2}} c_1 & c_0 & \sqrt{\frac{2}{3}} c_{-1} & \cdots & \sqrt{\frac{2}{n+1}} c_{-n+1} \\
 \sqrt{\frac{1}{3}} c_2 & \sqrt{\frac{2}{3}} c_1 & c_0 & \cdots & \sqrt{\frac{3}{n+1}} c_{-n+2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \sqrt{\frac{1}{n+1}} c_n & \sqrt{\frac{2}{n+1}} c_{n-1} & \sqrt{\frac{3}{n+1}} c_{n-2} & \cdots & c_0
\end{bmatrix}.
\]

We call \(T_n[\hat{f}]\) the Bergman Toeplitz matrix.
First Szegö theorem of Hardy Toeplitz operators
Asymptotic invertibility of Hardy and Bergman Toeplitz operators
Asymptotic invertibility of Bergman Toeplitz operators with $H^\infty (\mathbb{D})$
First Szegö theorem of Bergman Toeplitz operators

Bergman Toeplitz matrices

The upper left corner

$$T_n[\hat{f}] = \begin{bmatrix}
 c_0 & \sqrt{\frac{1}{2}} \, c_{-1} & \sqrt{\frac{1}{3}} \, c_{-2} & \cdots & \sqrt{\frac{1}{n+1}} \, c_{-n} \\
 \sqrt{\frac{1}{2}} \, c_1 & c_0 & \sqrt{\frac{2}{3}} \, c_{-1} & \cdots & \sqrt{\frac{2}{n+1}} \, c_{-n+1} \\
 \sqrt{\frac{1}{3}} \, c_2 & \sqrt{\frac{2}{3}} \, c_1 & c_0 & \cdots & \sqrt{\frac{3}{n+1}} \, c_{-n+2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \sqrt{\frac{1}{n+1}} \, c_n & \sqrt{\frac{2}{n+1}} \, c_{n-1} & \sqrt{\frac{3}{n+1}} \, c_{n-2} & \cdots & c_0
\end{bmatrix}. $$

We call $T_n[\hat{f}]$ the Bergman Toeplitz matrix. Let $D_n[f] = \det T_n[\hat{f}]$.

Ziliang Zhang

The first Szegö theorem of Toeplitz operators on Bergman spaces
First Szegö theorem of Hardy Toeplitz operators
Asymptotic invertibility of Hardy and Bergman Toeplitz operators
Asymptotic invertibility of Bergman Toeplitz operators with $H^\infty(D)$
First Szegö theorem of Bergman Toeplitz operators

Bergman Toeplitz matrices

The upper left corner

$$T_n[\hat{f}] = \begin{bmatrix}
 c_0 & \sqrt{\frac{1}{2}} c_{-1} & \sqrt{\frac{1}{3}} c_{-2} & \cdots & \sqrt{\frac{1}{n+1}} c_{-n} \\
 \sqrt{\frac{1}{2}} c_1 & c_0 & \sqrt{\frac{2}{3}} c_{-1} & \cdots & \sqrt{\frac{2}{n+1}} c_{-n+1} \\
 \sqrt{\frac{1}{3}} c_2 & \sqrt{\frac{2}{3}} c_1 & c_0 & \cdots & \sqrt{\frac{3}{n+1}} c_{-n+2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \sqrt{\frac{1}{n+1}} c_n & \sqrt{\frac{2}{n+1}} c_{n-1} & \sqrt{\frac{3}{n+1}} c_{n-2} & \cdots & c_0
\end{bmatrix}.$$

We call $T_n[\hat{f}]$ the Bergman Toeplitz matrix.

Let $D_n[f] = \det T_n[\hat{f}]$.

Q: What’s the asymptotic behavior of $D_n[f]$?
Asymptotic invertibility

Let P_n be the orthogonal projection from H^2 to \mathbb{L}_n, where
$\mathbb{L}_n = \overline{\{1, z, \ldots, z^n\}^{\text{span}}} \subset H^2$.

Ziliang Zhang

The first Szegö theorem of Toeplitz operators on Bergman spaces
Asymptotic invertibility

Let \mathbb{P}_n be the orthogonal projection from H^2 to \mathbb{L}_n, where

$$\mathbb{L}_n = \overline{\{1, z, \ldots, z^n\}}^{\text{span}} \subset H^2.$$

$T_n[f]$ can be identified as the compression $\mathbb{P}_n T_f \mathbb{P}_n$.

Ziliang Zhang
Asymptotic invertibility

Let P_n be the orthogonal projection from H^2 to L_n, where
\[L_n = \overline{\{1, z, \ldots, z^n\}}^{\text{span}} \subset H^2. \]
$T_n[f]$ can be identified as the compression $P_n T f P_n$.

Let P_n be the orthogonal projection from L^2_a to L_n, where
\[L_n = \overline{\{1, z, \ldots, z^n\}}^{\text{span}} \subset L^2_a. \]
Asymptotic invertibility

Let P_n be the orthogonal projection from H^2 to \mathbb{L}_n, where $\mathbb{L}_n = \text{span} \{1, z, \ldots, z^n\} \subset H^2$. $\mathbb{T}_n[f]$ can be identified as the compression $P_n T_f P_n$.

Let P_n be the orthogonal projection from L^2_a to L_n, where $L_n = \text{span} \{1, z, \ldots, z^n\} \subset L^2_a$. $T_n[\hat{f}]$ can be identified as the compression $P_n T_\hat{f} P_n$.
Asymptotic invertibility

Let \mathbb{P}_n be the orthogonal projection from H^2 to \mathbb{L}_n, where $\mathbb{L}_n = \text{span}\{1, z, \ldots, z^n\} \subset H^2$. $\mathcal{T}_n[f]$ can be identified as the compression $\mathbb{P}_n \mathcal{T}_f \mathbb{P}_n$.

Let P_n be the orthogonal projection from L^2_a to L_n, where $L_n = \text{span}\{1, z, \ldots, z^n\} \subset L^2_a$. $T_n[\hat{f}]$ can be identified as the compression $P_n T \hat{f} P_n$.

Definition (Asymptotic invertibility)

Given a bounded invertible operators A on H^2 (or L^2_a), A is said to be **asymptotically invertible** if for sufficient large n, the compressions $\mathbb{P}_n AP_n$ (or $P_n AP_n$) are invertible and

$$(\mathbb{P}_n AP_n)^{-1} \mathbb{P}_n \rightarrow A^{-1} \quad (\text{or} \quad (P_n AP_n)^{-1} P_n \rightarrow A^{-1})$$

in the strong operator topology.
In 1976, Widom gave an identity between Hardy Toeplitz matrices:

\[T_n[fg] = T_n[f]T_n[g] + P_n H_f^* H_g P_n + W_n J H_f H_g^* J W_n. \quad (1) \]
In 1976, Widom gave an identity between Hardy Toeplitz matrices:

$$T_n[fg] = T_n[f]T_n[g] + P_n H_f^* H_g P_n + W_n J H_f H_g^* J W_n. \quad (1)$$

Here, $J : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ is by $J(f) = \bar{z} f(\bar{z})$, where \bar{z} denotes the complex conjugate of z.
In 1976, Widom gave an identity between Hardy Toeplitz matrices:

\[T_n[fg] = T_n[f]T_n[g] + P_n H_f^* H_g P_n + W_n J H_f H_g^* J W_n. \] \hspace{1cm} (1)

Here, \(J : L^2(\mathbb{T}) \rightarrow L^2(\mathbb{T}) \) is by \(J(f) = \overline{zf(\overline{z})} \), and \(W_n : H^2 \rightarrow L_n \) is by \(W_n(f) = z^n \overline{\mathbb{P}_n(f)} \), where \(\tilde{f}(z) = f(\overline{z}) \).
Asymptotic invertibility of Hardy Toeplitz operators

Using the identity, Widom gave an inversion formula of Hardy Toeplitz matrices:

Theorem (Widom, 1976)

If \(f \in H^\infty + C(T) \) and \(T_f \) is invertible on \(H^2 \), then

\[
T_n[f]^{-1} = P_n T_f^{-1} P_n + W_n (T_{\bar{f}}^{-1} - T_{\bar{f}-1}) W_n + C_n,
\]

for sufficient large \(n \), where \(\|C_n\| \to 0 \) as \(n \to +\infty \).
Asymptotic invertibility of Hardy Toeplitz operators

Using the identity, Widom gave an inversion formula of Hardy Toeplitz matrices:

\[T_n[f]^{-1} = P_n T_f^{-1} P_n + W_n (T_{\tilde{f}}^{-1} - T_{\tilde{f}-1}) W_n + C_n, \]

for sufficient large \(n \), where \(\|C_n\| \to 0 \) as \(n \to +\infty \).

From this, a criterion of the asymptotic invertibility:

\[\text{Theorem (Widom, 1976)} \]
\[\text{If } f \in H^\infty + C(\mathbb{T}) \text{ and } T_f \text{ is invertible on } H^2, \text{ then} \]
\[T_f \text{ is asymptotically invertible if and only if } T_f \text{ is invertible on } H^2. \]
In 1990, Böttcher studied Bergman Toeplitz operators with symbols in $C_{N \times N}(\mathbb{D})$.
Asymptotic identity of Bergman Toeplitz matrices

In 1990, Böttcher studied Bergman Toeplitz operators with symbols in $C_{N \times N}(\mathbb{D})$.

An asymptotic identity of Bergman Toeplitz matrices:

Theorem (Böttcher, 1990)

If $f, g \in C_{N \times N}(\mathbb{D})$, then

$$T_n[fg] = T_n[f]T_n[g] + P_nH_f^*H_gP_n + UW_nJH_f^*H_g^*JW_nU^* + C_n,$$

where $\|C_n\| \to 0$ as $n \to +\infty$.
In 1990, Böttcher studied Bergman Toeplitz operators with symbols in $C_{N \times N} \left(\overline{D} \right)$. An asymptotic identity of Bergman Toeplitz matrices:

Theorem (Böttcher, 1990)

If $f, g \in C_{N \times N} \left(\overline{D} \right)$, then

$$T_n[fg] = T_n[f]T_n[g] + P_n H_f^* H_g P_n + UW_n J H_f^* H_g^* J W_n U^* + C_n,$$

where $\| C_n \| \to 0$ as $n \to +\infty$.

Here, U is an unitary operator from H^2 to L^2_a by $U(z^m) = e_m$ where $e_m = \sqrt{m+1} z^m$.

Ziliang Zhang
In 1990, Böttcher studied Bergman Toeplitz operators with symbols in $C_{N \times N}(D)$. An asymptotic identity of Bergman Toeplitz matrices:

Theorem (Böttcher, 1990)

If $f, g \in C_{N \times N}(D)$, then

$$T_n[fg] = T_n[f]T_n[g] + P_n H_f^* H_g P_n + UW_n J H_f^* H_g^* J W_n U^* + C_n,$$

where $\|C_n\| \to 0$ as $n \to +\infty$.

Here, U is an unitary operator from H^2 to L^2_a by $U(z^m) = e_m$ where $e_m = \sqrt{m+1} z^m$, and $f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$.

Ziliang Zhang
The first Szegö theorem of Toeplitz operators on Bergman spaces
Also a criterion of the asymptotic invertibility:

Theorem (Böttcher, 1990)

If \(f \in C_{N \times N}(\overline{\mathbb{D}}) \), then \(T_f \) is asymptotically invertible if and only if \(T_f \) is invertible on \((L^2_\alpha)^N \) and \(\tilde{T}_{f^*} \) is invertible on \(H^2_N \).
Criterion of asymptotic invertibility and Inversion formula

Inspired by these work, we consider Bergman Toeplitz operators with symbols in $H^\infty(\mathbb{D}) + C(\mathbb{D})$.

Theorem (1)

Let $f \in H^\infty(\mathbb{D}) + C(\mathbb{D})$. Then T_f is asymptotically invertible if and only if T_f is invertible on L^2_a. Moreover, if T_f is invertible, then for sufficiently large n one has

$$T_n[f]^{-1} = P_n T^{-1} f P_n + U W_n (T^{-1} \tilde{f}^* - T{\tilde{f}^*}^{-1}) W_n^* + C_n,$$

where $||C_n|| \to 0$ as $n \to +\infty$.

Ziliang Zhang
Inspired by these work, we consider Bergman Toeplitz operators with symbols in $H^\infty(D) + C(\overline{D})$.

A criterion of asymptotic invertibility and an asymptotic inversion formula:

Theorem (1)

Let $f \in H^\infty(D) + C(\overline{D})$. Then T_f is asymptotically invertible if and only if T_f is invertible on L^2_a.

Moreover, if T_f is invertible, then for sufficiently large n one has

$$T_n[f]^{-1} = P_n T_f^{-1} P_n + U W_n (T_{f^*}^{-1} - T_{f^*}^{-1}) W_n U^* + C_n,$$

where $\|C_n\| \to 0$ as $n \to +\infty$.

First Szegő theorem of Hardy Toeplitz operators
Asymptotic invertibility of Hardy and Bergman Toeplitz operators
Asymptotic invertibility of Bergman Toeplitz operators with $H^\infty(D)$
First Szegö theorem of Bergman Toeplitz operators

Criterion of asymptotic invertibility and Inversion formula

Inspired by these work, we consider Bergman Toeplitz operators with symbols in $H^\infty(D) + C(\overline{D})$.

A criterion of asymptotic invertibility and An asymptotic inversion formula:

Theorem (1)

Let $f \in H^\infty(D) + C(\overline{D})$. Then T_f is asymptotically invertible if and only if T_f is invertible on L^2_a. Moreover, if T_f is invertible, then for sufficiently large n one has

$$T_n[f]^{-1} = P_n T_f^{-1} P_n + U W_n (T_{f^*}^{-1} - T_{f^*}^{-1}) W_n U^* + C_n,$$

where $\|C_n\| \to 0$ as $n \to +\infty$.

Ziliang Zhang

The first Szegő theorem of Toeplitz operators on Bergman spaces
Idea of the proof of asymptotic invertibility

Some lemmas:

Lemma

If \(f, g \in H^\infty(\mathbb{D}) + C(\mathbb{D}) \), then

\[
T_n[fg] = T_n[f]T_n[g] + P_nH_f^*H_gP_n + UW_nJH_f^*H_g^*JW_nU^* + C_n, \tag{2}
\]

where \(\|C_n\| \to 0 \) as \(n \to +\infty \).
Idea of the proof of asymptotic invertibility

Some lemmas:

Lemma

If $f, g \in H^\infty(\mathbb{D}) + C(\overline{\mathbb{D}})$, *then*

$$T_n[fg] = T_n[f]T_n[g] + P_nH_f^*H_gP_n + UW_nJH_f^*H_g^*JW_nU^* + C_n, \quad (2)$$

where $\|C_n\| \to 0$ *as* $n \to +\infty$.

Lemma

Let $f \in H^\infty(\mathbb{D}) + C(\overline{\mathbb{D}})$. *If* T_f *is invertible on* L^2_a, *then both* T_f^* *and* $T_{\tilde{f}}^*$ *are invertible on* H^2.
Idea of the proof of asymptotic invertibility

Some lemmas:

Lemma

If \(f, g \in H^\infty(D) + C(D) \), then

\[
T_n[fg] = T_n[f]T_n[g] + P_nH^*_fH_gP_n + UW_nJH^*_fH^*_gJW_nU^* + C_n, \tag{2}
\]

where \(\|C_n\| \to 0 \) as \(n \to +\infty \).

Lemma

Let \(f \in H^\infty(D) + C(D) \). If \(T_f \) is invertible on \(L^2_a \), then both \(T_{f^*} \) and \(T_{\bar{f}^*} \) are invertible on \(H^2 \).

Silbermann’s theorem: A criterion of asymptotic invertibility for general bounded linear operators on \(H^2 \).
The first Szegö theorem for Bergman case:

Theorem (2)

If \(f \in H^\infty(\mathbb{D}) + C(\overline{\mathbb{D}}) \) and \(T_f \) is invertible, then

\[
\lim_{n \to +\infty} \frac{D_n[f]}{D_{n-1}[f]} = G[f^*].
\]
The first Szegő theorem for Bergman case:

Theorem (2)

If \(f \in H^\infty(D) + C(D) \) and \(T_f \) is invertible, then

\[
\lim_{n \to +\infty} \frac{D_n[f]}{D_{n-1}[f]} = G[f^*].
\]

Here, \(G[f^*] \) is the geometric mean of \(f^* \) as

\[
G[f] = \lim_{r \to 1} \exp \left[\frac{1}{2\pi} \int_0^{2\pi} \ln \hat{f}^*(re^{i\theta}) d\theta \right].
\]
Sketch of proof of first Szegö theorem of Bergman case

Let $M = [m_{ij}]_{i,j=1}^n$ be an invertible n by n matrix.
Sketch of proof of first Szegö theorem of Bergman case

Let $M = [m_{ij}]_{i,j=1}^n$ be an invertible n by n matrix. Then

$$M^{-1} = \frac{\text{adj } M}{\det M}.$$
Sketch of proof of first Szegö theorem of Bergman case

Let $M = [m_{ij}]_{i,j=1}^n$ be an invertible n by n matrix. Then

$$M^{-1} = \frac{\text{adj } M}{\det M}.$$

Here, the adjugate matrix $\text{adj } M = [M_{ij}]'$, where M_{ij} is the cofactor of m_{ij}.
Sketch of proof of first Szegö theorem of Bergman case

Let $M = [m_{ij}]_{i,j=1}^n$ be an invertible n by n matrix. Then

$$M^{-1} = \frac{adj\, M}{\det M}.$$

Here, the adjugate matrix $adj\, M = [M_{ij}]'$, where M_{ij} is the cofactor of m_{ij}.

Apply to invertible Bergman Toeplitz matrices to get

$$T_n[f]^{-1} = \frac{adj\, T_n[f]}{D_n[f]}.$$
Sketch of proof of first Szegö theorem of Bergman case

Let $M = [m_{ij}]_{i,j=1}^{n}$ be an invertible n by n matrix. Then

$$M^{-1} = \frac{\text{adj} M}{\det M}.$$

Here, the adjugate matrix $\text{adj} M = [M_{ij}]'$, where M_{ij} is the cofactor of m_{ij}. Apply to invertible Bergman Toeplitz matrices to get

$$T_n[f]^{-1} = \frac{\text{adj} T_n[f]}{D_n[f]}.$$

Then the entry in the lower right corner is

$$< T_n[f]^{-1} e_n, e_n > = \frac{D_{n-1}[f]}{D_n[f]}.$$
Sketch of proof of first Szegö theorem of Bergman case

Apply asymptotic inversion formula to the above formula to get

\[
\lim_{n \to +\infty} \frac{D_{n-1}[f]}{D_n[f]} = \lim_{n \to +\infty} \left\langle [P_n T_f^{-1} P_n + U W_n (T_{\tilde{f}^*}^{-1} - T_{\tilde{f}^*^{-1}}) W_n U^* + C_n] e_n, e_n \right\rangle.
\]
Sketch of proof of first Szegő theorem of Bergman case

Apply asymptotic inversion formula to the above formula to get

$\lim_{{n \to +\infty}} \frac{D_{n-1}[f]}{D_n[f]}$

$= \lim_{{n \to +\infty}} \langle [P_n T_f^{-1} P_n + UW_n(T_{f^*}^{-1} - T_{\tilde{f}^*}^{-1}) W_n U^* + C_n] e_n, e_n \rangle$.

Similar argument gives the following identity of Hardy case

$\lim_{{n \to +\infty}} \frac{D_{n-1}[f^*]}{D_n[f^*]}$

$= \lim_{{n \to +\infty}} \langle [P_n T_{f^*}^{-1} P_n + W_n(T_{f^*}^{-1} - T_{\tilde{f}^*}^{-1}) W_n + C_n] e_n, e_n \rangle$.
Sketch of proof of first Szegő theorem of Bergman case

Apply asymptotic inversion formula to the above formula to get

\[
\lim_{n \to +\infty} \frac{D_{n-1}[f]}{D_n[f]} = \lim_{n \to +\infty} \langle [P_n T_f^{-1} P_n + UW_n (T_{f^{-1}} - T_{f^{-1}_*}) W_n U^* + C_n] e_n, e_n \rangle.
\]

Similar argument gives the following identity of Hardy case

\[
\lim_{n \to +\infty} \frac{D_{n-1}[f^*]}{D_n[f^*]} = \lim_{n \to +\infty} \langle [P_n T_{f^*}^{-1} P_n + W_n (T_{f_*}^{-1} - T_{f_*^{-1}}) W_n + C_n] e_n, e_n \rangle.
\]

Estimate the above identities and use the first Szegő theorem for Hardy case.
The first Szegő theorem for Bergman case:

Theorem (2)

If \(f \in H^\infty(D) + C(\overline{D}) \) and \(T_f \) is invertible, then

\[
\lim_{n \to +\infty} \frac{D_n[f]}{D_{n-1}[f]} = G[f^*].
\]

Here, \(G[f^*] \) is the geometric mean of \(f^* \) as

\[
G[f] = \lim_{r \to 1} \exp \left[\frac{1}{2\pi} \int_0^{2\pi} \ln \hat{f}^*(re^{i\theta}) d\theta \right].
\]
Thank You!