Difference of two weighted composition operators on Bergman spaces

S. Acharyya*, Z. Wu

*Department of Math, Physical, and, Life Sciences Embry - Riddle Aeronautical University Worldwide,

Department of Mathematical Sciences University of Nevada, Las Vegas

Southeastern Analysis Meeting 2017

Definition

- ullet $H\left(\mathbb{D}\right)$: All Analytic functions on \mathbb{D}
- Weighted Bergman space

$$A_{\alpha}^{p} = \left\{ f \in H\left(\mathbb{D}\right) : \int_{\mathbb{D}} |f\left(z\right)|^{p} dA_{\alpha}\left(z\right) < \infty \right\}, \text{ where } dA_{\alpha}\left(z\right) = \left(\alpha + 1\right) \left(1 - |z|^{2}\right)^{\alpha} dA\left(z\right), \ \alpha > -1$$

• $A_0^2 = A^2$ (Bergman Space)

Definition

- \bullet $H(\mathbb{D})$: All Analytic functions on \mathbb{D}
- Weighted Bergman space

$$A_{\alpha}^{p}=\left\{ f\in H\left(\mathbb{D}\right): \int_{\mathbb{D}}\left|f\left(z\right)\right|^{p}dA_{\alpha}\left(z\right)<\infty
ight\}$$
, where $dA_{\alpha}\left(z\right)=\left(lpha+1
ight)\left(1-\left|z
ight|^{2}
ight)^{lpha}dA\left(z
ight)$, $lpha>-1$

• $A_0^2 = A^2$ (Bergman Space)

Definition

- ullet $H(\mathbb{D})$: All Analytic functions on \mathbb{D}
- Weighted Bergman space

$$A_{\alpha}^{p}=\left\{ f\in H\left(\mathbb{D}\right): \int_{\mathbb{D}}\left|f\left(z\right)\right|^{p}dA_{\alpha}\left(z\right)<\infty
ight\}$$
, where $dA_{\alpha}\left(z\right)=\left(lpha+1
ight)\left(1-\left|z
ight|^{2}
ight)^{lpha}dA\left(z
ight)$, $lpha>-1$

• $A_0^2 = A^2$ (Bergman Space)

Definitions

ullet $\varphi:$ **Analytic** from $\mathbb{D} \to \mathbb{D}$

Definition

The composition operator with symbol φ :

$$C_{\varphi}: H(\mathbb{D}) \to H(\mathbb{D}), \quad C_{\varphi}(f) = f \circ \varphi$$

• u : **Measurable** from $\mathbb{D} \to \mathbb{C}$

Definition

The weighted composition operator with weight u and symbol φ :

$$uC_{\varphi}: H(\mathbb{D}) \to \mathsf{All}$$
 measurable functions on $\mathbb{D}, \ uC_{\varphi}(f) = u(f \circ \varphi)$

Definitions

ullet $\varphi:$ **Analytic** from $\mathbb{D} \to \mathbb{D}$

Definition

The composition operator with symbol φ :

$$C_{\varphi}: H(\mathbb{D}) \to H(\mathbb{D}), \quad C_{\varphi}(f) = f \circ \varphi$$

• u : **Measurable** from $\mathbb{D} \to \mathbb{C}$

Definition

The weighted composition operator with weight u and symbol φ :

$$uC_{\varphi}: H(\mathbb{D}) \to \text{All measurable functions on } \mathbb{D}, \quad uC_{\varphi}(f) = u(f \circ \varphi)$$

Introduction

Question

When is $uC_{\varphi} - vC_{\psi}$ compact? (Assume u and v are analytic)

It is known that

Theorem (Z.Čučković and R. Zhao, 2007)

•
$$1$$

Then uC_{φ} is **compact** from A_{α}^{p} into A_{β}^{q} if and only if

$$\lim_{|z|\to 1_{-}}\int_{\mathbb{D}}\left(\frac{1-|z|^{2}}{|1-\overline{z}\,\varphi(w)|^{2}}\right)^{\frac{(2+\alpha)q}{p}}|u(w)|^{q}\,dA_{\beta}(w)=0$$

Introduction

Question

When is $uC_{\varphi} - vC_{\psi}$ compact? (Assume u and v are analytic)

It is known that:

Theorem (Z.Čučković and R. Zhao, 2007)

•
$$1$$

Then uC_{φ} is **compact** from A^p_{α} into A^q_{β} if and only if

$$\lim_{|z|\to 1_{-}}\int_{\mathbb{D}}\left(\frac{1-|z|^{2}}{|1-\overline{z}\,\varphi(w)|^{2}}\right)^{\frac{(2+\alpha)q}{p}}|u(w)|^{q}\,dA_{\beta}(w)=0.$$

A theorem of Moorhouse

Question

When is $C_{\varphi} - C_{\psi}$ compact?

Theorem (J. Moorhouse, 2005)

 $C_{\varphi}-C_{\psi}$ is **compact** on A_{α}^{2} if and only if **both**

$$\lim_{|z|\to 1_{-}} |\sigma(z)| \frac{1-|z|^{2}}{1-|\varphi(z)|^{2}} = 0, \quad \lim_{|z|\to 1_{-}} |\sigma(z)| \frac{1-|z|^{2}}{1-|\psi(z)|^{2}} = 0.$$

Here
$$\sigma(z)=rac{arphi(z)-\psi(z)}{1-\overline{arphi(z)}\psi(z)},\,z\in\mathbb{D}$$

Note: $|\sigma|$ is often referred to as the **Cancellation Factor.**

A theorem of Moorhouse

Question When is $C_{\varphi} - C_{\psi}$ compact?

Theorem (J. Moorhouse, 2005)

 $C_{\omega} - C_{\psi}$ is **compact** on A_{α}^2 if and only if **both**

$$\lim_{|z|\to 1_{-}} |\sigma(z)| \frac{1-|z|^{2}}{1-|\varphi(z)|^{2}} = 0, \quad \lim_{|z|\to 1_{-}} |\sigma(z)| \frac{1-|z|^{2}}{1-|\psi(z)|^{2}} = 0.$$

Here
$$\sigma(z) = \frac{\varphi(z) - \psi(z)}{1 - \overline{\varphi(z)}\psi(z)}, \ z \in \mathbb{D}$$

Note: $|\sigma|$ is often referred to as the **Cancellation Factor.**

Connection between the Difference operator and Weighted Composition operators

The next theorem links the two types of operators.

Theorem (E. Saukko, 2011)

•
$$1$$

Then $C_{\varphi} - C_{\psi}$ is compact from A^p_{α} into A^q_{β} if and only if σC_{φ} and σC_{ψ} are **both** compact from A^p_{α} into $L^q(A_{\beta})$.

Another Version of Saukko's theorem

Theorem (Another Version)

 $C_{\varphi}-C_{\psi}$ is compact from A^p_{α} into A^q_{β} if and only if each of the following holds:

(a)

$$\lim_{|z|\to 1_{-}}\int_{\mathbb{D}}\left(\frac{1-|z|^{2}}{|1-\overline{z}\,\varphi(w)|^{2}}\right)^{\frac{(2+\alpha)q}{p}}|\sigma(w)|^{q}\,dA_{\beta}(w)=0,$$

(b)

$$\lim_{|z|\to 1_{-}}\int_{\mathbb{D}}\left(\frac{1-|z|^{2}}{|1-\overline{z}\,\psi(w)|^{2}}\right)^{\frac{(2+\alpha)q}{p}}|\sigma(w)|^{q}\,dA_{\beta}(w)=0$$

Answering the Original Question

Question

When is $uC_{\varphi} - vC_{\psi}$ compact? (Assume u and v are **analytic**)

Definition

For $\gamma \in \mathbb{R}$, $M(\gamma)$ is defined as follows:

$$M(\gamma) = \{f : ||f(z)(1-|z|^2)^{\gamma}||_{L^{\infty}} < \infty$$

Answering the Original Question

Question

When is $uC_{\varphi} - vC_{\psi}$ compact? (Assume u and v are analytic)

Definition

For $\gamma \in \mathbb{R}$, $M(\gamma)$ is defined as follows:

$$M(\gamma) = \{f : ||f(z)(1-|z|^2)^{\gamma}||_{L^{\infty}} < \infty\}$$

- 0
- $\frac{2+\alpha}{p} \le \frac{2+\beta}{q}$
- $u, v \in M(\frac{2+\beta}{q} \frac{2+\alpha}{p})$

Theorem (Acharyya and Wu, 2017)

 $u\mathcal{C}_{arphi}-v\mathcal{C}_{\psi}:A^p_{lpha} o A^q_{eta}$ is **compact** if and only if each of the following holds:

(a) $\lim_{z \to \infty} |\sigma(z)| \left(|u(z)| - \frac{(1-|z|^2)^{\frac{2+\beta}{q}}}{2} \right)$

$$\lim_{|z| \to 1_{-}} |\sigma(z)| \left(|u(z)| \frac{(1 - |z|^{2})^{\frac{2+\beta}{q}}}{(1 - |\varphi(z)|^{2})^{\frac{2+\alpha}{p}}} + |v(z)| \frac{(1 - |z|^{2})^{\frac{2+\beta}{q}}}{(1 - |\psi(z)|^{2})^{\frac{2+\alpha}{p}}} \right) = 0$$

(b)

$$\lim_{|z| \to 1_{-}} (1 - |\sigma(z)|^{2})^{\frac{2+\alpha}{p}} |u(z) - v(z)| \left(\frac{(1 - |z|^{2})^{\frac{2+\beta}{q}}}{(1 - |\varphi(z)|^{2})^{\frac{2+\alpha}{p}}} + \frac{(1 - |z|^{2})^{\frac{2+\beta}{q}}}{(1 - |\psi(z)|^{2})^{\frac{2+\alpha}{p}}} \right) = 0$$

- 0
- $\frac{2+\alpha}{p} \le \frac{2+\beta}{q}$
- $u, v \in M(\frac{2+\beta}{q} \frac{2+\alpha}{p})$

Theorem (Acharyya and Wu, 2017)

 $uC_{\varphi} - vC_{\psi}: A^p_{\alpha} \to A^q_{\beta}$ is **compact** if and only if each of the following holds:

(a)

$$\lim_{|z|\to 1_{-}}|\sigma(z)|\left(|u(z)|\frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}}+|v(z)|\frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}}\right)=0,$$

(b)

$$\lim_{|z|\to 1_{-}} (1-|\sigma(z)|^{2})^{\frac{2+\alpha}{p}} |u(z)-v(z)| \left(\frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}} + \frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}}\right) = 0$$

Theorem (Acharyya and Wu, 2017)

 $uC_{\varphi} - vC_{\psi} : A^p_{\alpha} \to A^q_{\beta}$ is **compact** if and only if each of the following holds:

(a)

$$\lim_{|z|\to 1_{-}} |\sigma(z)| \left(|u(z)| \frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}} + |v(z)| \frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}} \right) = 0,$$

(b)

$$\lim_{|z|\to 1_{-}} (1-|\sigma(z)|^{2})^{\frac{2+\alpha}{p}} |u(z)-v(z)| \left(\frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}} + \frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}} \right) = 0$$

Proof: " \Longrightarrow " Suppose $uC_{\varphi} - vC_{\psi} : A^p_{\alpha} \to A^q_{\beta}$ is compact.

Let $\varphi_a(z)=rac{z-a}{1-\overline{a}z}.$ Note that $k_a\,, \varphi_a k_a o 0$ weakly. Thus

$$\lim_{|a|\to 1_{-}}\left\|uC_{\varphi}(k_{a})-vC_{\psi}(k_{a})\right\|_{q,\beta}=0, \lim_{|a|\to 1_{-}}\left\|uC_{\varphi}(\varphi_{a}k_{a})-vC_{\psi}(\varphi_{a}k_{a})\right\|_{q,\beta}=0$$

Apply the lemma:

Lemma

Suppose 0 and <math>0 < r < 1. There is a constant C > 0 such that for any $z \in \mathbb{D}$ and $f \in A^p_\alpha$

$$|f(z)|^p \leq \frac{C}{(1-|z|^2)^{2+\alpha}} \int_{\triangle(z,r)} |f(w)|^p dA_{\alpha}(w).$$

Also, use the elementary facts that $C_{\varphi}(\varphi_{\varphi(z)})(z)=0$ and $\left|C_{\psi}(\varphi_{\varphi(z)})(z)\right|=|\sigma(z)|$, and a chain of inequalities to obtain

$$\lim_{|z|\to 1_{-}} \frac{|\sigma(z)||u(z)|(1-|z|^2)^{\frac{2+\beta}{q}}}{(1-|\varphi(z)|^2)^{\frac{2+\alpha}{p}}} = 0,$$

$$\lim_{|z|\to 1-}\frac{|u(z)-v(z)|(1-|\sigma(z)|^2)^{\frac{2+\alpha}{p}}}{(1-|\psi(z)|^2)^{\frac{2+\alpha}{p}}}(1-|z|^2)^{\frac{2+\beta}{q}}=0.$$

Apply the lemma:

Lemma

Suppose 0 and <math>0 < r < 1. There is a constant C > 0 such that for any $z \in \mathbb{D}$ and $f \in A^p_\alpha$

$$|f(z)|^p \leq \frac{C}{(1-|z|^2)^{2+\alpha}} \int_{\triangle(z,r)} |f(w)|^p dA_{\alpha}(w).$$

Also, use the elementary facts that $C_{\varphi}(\varphi_{\varphi(z)})(z)=0$ and $\left|C_{\psi}(\varphi_{\varphi(z)})(z)\right|=|\sigma(z)|$, and a chain of inequalities to obtain

$$\lim_{|z|\to 1_{-}}\frac{|\sigma(z)||u(z)|(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}}=0,$$

$$\lim_{|z|\to 1_{-}}\frac{|u(z)-v(z)|(1-|\sigma(z)|^{2})^{\frac{2+\alpha}{p}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}}(1-|z|^{2})^{\frac{2+\beta}{q}}=0.$$

Similarly

$$\lim_{|z| \to 1_{-}} \frac{|\sigma(z)||v(z)|(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}} = 0,$$

$$|u(z) - v(z)|(1-|\sigma(z)|^{2})^{\frac{2+\alpha}{p}}$$

$$\lim_{|z|\to 1_{-}}\frac{|u(z)-v(z)|(1-|\sigma(z)|^2)^{\frac{2+\alpha}{p}}}{(1-|\varphi(z)|^2)^{\frac{2+\alpha}{p}}}(1-|z|^2)^{\frac{2+\beta}{q}}=0.$$

(has root in Moorhouse and Saukko's work:)

It is sufficient to show that for any sequence $\{f_n\}$ in A^p_α with $\|f_n\|_{p,\alpha} \leq 1$ and $f_n(z) \to 0$ as $n \to \infty$ uniformly on any compact set of $\mathbb D$, we have

$$\|(uC_{\varphi}-vC_{\psi})(f_n)\|_{q,\beta}\to 0$$
 as $n\to\infty$.

Partition the disk into E and E', with $E=\{z\in\mathbb{D}: |\sigma(z)|<rac{2-\sqrt{3}}{2}\}$

Similarly

$$\lim_{|z|\to 1_{-}}\frac{|\sigma(z)||v(z)|(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}}=0,$$

$$\lim_{|z|\to 1_{-}}\frac{|u(z)-v(z)|(1-|\sigma(z)|^{2})^{\frac{2+\alpha}{p}}}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}}(1-|z|^{2})^{\frac{2+\beta}{q}}=0.$$

(has root in Moorhouse and Saukko's work:)

It is sufficient to show that for any sequence $\{f_n\}$ in A^p_α with $\|f_n\|_{p,\alpha} \leq 1$ and $f_n(z) \to 0$ as $n \to \infty$ uniformly on any compact set of $\mathbb D$, we have

$$\|(uC_{\varphi}-vC_{\psi})(f_n)\|_{q,\beta}\to 0 \text{ as } n\to\infty.$$

Partition the disk into E and E', with $E=\{z\in\mathbb{D}: |\sigma(z)|<\frac{2-\sqrt{3}}{2}\}$

We can write

$$(uC_{\varphi}-vC_{\psi})(f_n)=(uC_{\varphi}-vC_{\psi})(f_n)\chi_{E'}+(u-v)C_{\psi}(f_n)\chi_E+u(C_{\varphi}-C_{\psi})(f_n)\chi_E.$$

Therefore we need to establish the following three statements

$$\lim_{n \to \infty} \left\| \left(uC_{\varphi} - vC_{\psi} \right) (f_n) \chi_{E'} \right\|_{q,\beta} = 0,$$

$$\lim_{n \to \infty} \left\| \left(u - v \right) C_{\psi} (f_n) \chi_{E} \right\|_{q,\beta} = 0,$$

$$\lim_{n \to \infty} \left\| u (C_{\varphi} - C_{\psi}) (f_n) \chi_{E} \right\|_{q,\beta} = 0.$$

The first two statements are true, due to the following lemma.

We can write

$$(uC_{\varphi}-vC_{\psi})(f_n)=(uC_{\varphi}-vC_{\psi})(f_n)\chi_{E'}+(u-v)C_{\psi}(f_n)\chi_E+u(C_{\varphi}-C_{\psi})(f_n)\chi_E.$$

Therefore we need to establish the following three statements.

$$\begin{split} &\lim_{n\to\infty}\left\|(uC_{\varphi}-vC_{\psi})(f_n)\chi_{E'}\right\|_{q,\beta}=0,\\ &\lim_{n\to\infty}\left\|(u-v)C_{\psi}(f_n)\chi_{E}\right\|_{q,\beta}=0,\\ &\lim_{n\to\infty}\left\|u(C_{\varphi}-C_{\psi})(f_n)\chi_{E}\right\|_{q,\beta}=0. \end{split}$$

The first two statements are true, due to the following lemma.

We can write

$$(uC_{\varphi}-vC_{\psi})(f_n)=(uC_{\varphi}-vC_{\psi})(f_n)\chi_{E'}+(u-v)C_{\psi}(f_n)\chi_E+u(C_{\varphi}-C_{\psi})(f_n)\chi_E.$$

Therefore we need to establish the following three statements.

$$\begin{split} &\lim_{n\to\infty}\left\|(uC_{\varphi}-vC_{\psi})(f_n)\chi_{E'}\right\|_{q,\beta}=0,\\ &\lim_{n\to\infty}\left\|(u-v)C_{\psi}(f_n)\chi_{E}\right\|_{q,\beta}=0,\\ &\lim_{n\to\infty}\left\|u(C_{\varphi}-C_{\psi})(f_n)\chi_{E}\right\|_{q,\beta}=0. \end{split}$$

The first two statements are true, due to the following lemma.

Lemma

Suppose s,t>0, ω is a nonnegative locally bounded measurable function on \mathbb{D} , φ is a holomorphic self map of \mathbb{D} , and

$$\lim_{|z| \to 1_{-}} \omega(z) \frac{(1 - |z|^{2})^{s}}{(1 - |\varphi(z)|^{2})^{t}} = 0.$$

- (a) If $\beta > s 1$, then the measure $\varphi_*(\omega, A_\beta)$ is a compact $(2 + \beta + t s)$ -Carleson measure.
- (b) If $\beta > -1$ and $\omega \in M(\gamma)$ with $\gamma < 1 + \beta$, then the measure $\varphi_*(\omega, A_\beta)$ is a compact $(2 + \beta \gamma + \epsilon(\gamma + t s))$ -Carleson measure for any $\epsilon \in (0, \min\{\frac{1+\beta-\gamma}{s-\gamma}, 1\})$ if $\gamma < s$, or $\epsilon \in (0, 1)$ if $\gamma \geq s$.

To prove the third statement

$$\lim_{n\to\infty}\|u(C_{\varphi}-C_{\psi})(f_n)\chi_E\|_{q,\beta}=0,$$

we apply Fubini, the previous lemma, and the following lemma:

Lemma

Let 0 . There exists a constant <math>C > 0, such that for all $a \in \mathbb{D}$, $z \in \triangle(a, \frac{2-\sqrt{3}}{2})$, and $f \in A^p_\alpha$ with $\|f\|_{p,\alpha} \le 1$

$$|f(z)-f(a)|^q \leq C \frac{|\varphi_a(z)|^q}{(1-|a|^2)^{(2+\alpha)q/p}} \int_{\triangle(a,\frac{1}{2})} |f(w)|^p dA_{\alpha}.$$

The theorem of Moorhouse

Theorem (Acharyya and Wu, 2017)

 $uC_{\varphi} - vC_{\psi} : A^p_{\alpha} \to A^q_{\beta}$ is **compact** if and only if each of the following holds:

$$\lim_{|z|\to 1_{-}} |\sigma(z)| \left(|u(z)| \frac{(1-|z|^2)^{\frac{2+\alpha}{q}}}{(1-|\varphi(z)|^2)^{\frac{2+\alpha}{p}}} + |v(z)| \frac{(1-|z|^2)^{\frac{2+\alpha}{q}}}{(1-|\psi(z)|^2)^{\frac{2+\alpha}{p}}} \right) = 0,$$

(b)

$$\lim_{|z|\to 1_{-}} (1-|\sigma(z)|^{2})^{\frac{2+\alpha}{p}} |u(z)-v(z)| \left(\frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}} + \frac{(1-|z|^{2})^{\frac{2+\beta}{q}}}{(1-|\psi(z)|^{2})^{\frac{2+\alpha}{p}}} \right) = 0$$

Corollary (J. Moorhouse, 2005)

 $C_{\varphi} - C_{\psi}$ is **compact** on A_{α}^2 if and only if **both**

$$\lim_{|z|\to 1_{-}} |\sigma(z)| \frac{1-|z|^2}{1-|\varphi(z)|^2} = 0, \quad \lim_{|z|\to 1_{-}} |\sigma(z)| \frac{1-|z|^2}{1-|\psi(z)|^2} = 0.$$

Hilbert-Schmidt operator (definition)

- X : Separable Hilbert space
- $\{e_j\}$: Orthonormal basis

Definition

T is Hilbert-Schmidt if

$$||T||_{HS(X)} = \left\{ \sum_{j=0}^{\infty} ||Te_j||^2 \right\}^{\frac{1}{2}} < \infty$$

Notational Simplicity: $||T||_{HS(X)} = ||T||_{HS}$

Hilbert-Schmidt operator (definition)

- X : Separable Hilbert space
- $\{e_i\}$: Orthonormal basis

Definition

T is **Hilbert-Schmidt** if

$$||T||_{HS(X)} = \left\{ \sum_{j=0}^{\infty} ||Te_j||^2 \right\}^{\frac{1}{2}} < \infty$$

Notational Simplicity: $||T||_{HS(X)} = ||T||_{HS}$

Theorem (B.R. Choe, T. Hosokawa and H. Koo, 2010)

Let $\alpha \geq -1$. Consider $C_{\varphi} - C_{\psi}$ acting on A_{α}^2 . Then

$$\|C_{\varphi} - C_{\psi}\|_{HS}^{2} \asymp \int_{\mathbb{D}} \frac{|\sigma^{2}(\mathbf{z})| dA_{\alpha}(\mathbf{z})}{(1 - |\varphi(\mathbf{z})|^{2})^{2 + \alpha}} + \int_{\mathbb{D}} \frac{|\sigma^{2}(\mathbf{z})| dA_{\alpha}(\mathbf{z})}{(1 - |\psi(\mathbf{z})|^{2})^{2 + \alpha}}$$

Here $\alpha = -1$ corresponds to H^2 , and the comparability constants depend only on α .

Theorem (Acharyya and Wu, 2017)

- ullet \mathbb{E} : \mathbb{D} or \mathbb{T}
- u, v : Measurable
- $uC_{\varphi} vC_{\psi}$ acting from $A_{\alpha}^2 \to L^2(\mu)$

$$\begin{split} \|uC_{\varphi} - vC_{\psi}\|_{HS}^{2} & \lesssim \int_{\mathbb{E}} |\sigma|^{2} \left(\frac{|u|^{2}}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{|v|^{2}}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \\ & + \int_{\mathbb{E}} (1 - |\sigma|^{2})^{2 + \alpha} |u - v|^{2} \left(\frac{1}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{1}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \end{split}$$

Theorem (Acharyya and Wu, 2017)

- ■ :
 ■ or
 ■
- u, v : Measurable
- $uC_{\varphi} vC_{\psi}$ acting from $A_{\alpha}^2 \to L^2(\mu)$

$$\begin{split} &\|u\mathcal{C}_{\varphi} - v\mathcal{C}_{\psi}\|_{\mathcal{H}S}^{2} \asymp \int_{\mathbb{E}} |\sigma|^{2} \left(\frac{|u|^{2}}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{|v|^{2}}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \\ &+ \int_{\mathbb{E}} (1 - |\sigma|^{2})^{2 + \alpha} |u - v|^{2} \left(\frac{1}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{1}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \end{split}$$

A Key Lemma:

Lemma (Acharyya and Wu, 2017)

- For $z,w\in\mathbb{D}$, define $ho=rac{z-w}{1-\overline{z}w}$
- $\alpha > -2$

$$|A|^{2} K_{z}^{(\alpha)}(z) + |B|^{2} K_{w}^{(\alpha)}(w) + 2\Re \left(A \overline{B} K_{w}^{(\alpha)}(z) \right) \approx$$

$$|\rho|^{2} \left(|A|^{2} K_{z}^{(\alpha)}(z) + |B|^{2} K_{w}^{(\alpha)}(w) \right)$$

$$+ (1 - |\rho|^{2})^{2+\alpha} |A + B|^{2} \left(K_{z}^{(\alpha)}(z) + K_{w}^{(\alpha)}(w) \right).$$

A Key Lemma:

Lemma (Acharyya and Wu, 2017)

- For $z, w \in \mathbb{D}$, define $\rho = \frac{z-w}{1-\overline{z}w}$
- $\alpha > -2$

$$\begin{split} |A|^2 \mathcal{K}_{z}^{(\alpha)}(z) + |B|^2 \mathcal{K}_{w}^{(\alpha)}(w) + 2\Re\left(A\overline{B}\mathcal{K}_{w}^{(\alpha)}(z)\right) &\approx \\ |\rho|^2 \left(|A|^2 \mathcal{K}_{z}^{(\alpha)}(z) + |B|^2 \mathcal{K}_{w}^{(\alpha)}(w)\right) \\ + (1 - |\rho|^2)^{2+\alpha} |A + B|^2 \left(\mathcal{K}_{z}^{(\alpha)}(z) + \mathcal{K}_{w}^{(\alpha)}(w)\right). \end{split}$$

Corollary

Theorem (Acharyya and Wu, 2017)

$$\begin{split} &\|u C_{\varphi} - v C_{\psi}\|_{HS}^{2} \asymp \int_{\mathbb{E}} |\sigma|^{2} \left(\frac{|u|^{2}}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{|v|^{2}}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \\ &+ \int_{\mathbb{E}} (1 - |\sigma|^{2})^{2 + \alpha} |u - v|^{2} \left(\frac{1}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{1}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \end{split}$$

Corollary

Consider the following operators

$$\sigma u \mathcal{C}_{arphi}, \; \sigma v \mathcal{C}_{\psi}, \; (1-|\sigma|^2)^{1+rac{lpha}{2}} (u-v) \mathcal{C}_{arphi} \; ext{and} \; (1-|\sigma|^2)^{1+rac{lpha}{2}} (u-v) \mathcal{C}_{\psi}$$

from A_{α}^2 or H^2 to $L^2(\mu)$. Then $uC_{\varphi} - vC_{\psi}$ is Hilbert-Schmidt if and only if all of the four operators are Hilbert-Schmidt.

Corollary

Theorem (Acharyya and Wu, 2017)

$$\begin{split} \|u C_{\varphi} - v C_{\psi}\|_{HS}^{2} & \lesssim \int_{\mathbb{E}} |\sigma|^{2} \left(\frac{|u|^{2}}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{|v|^{2}}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \\ & + \int_{\mathbb{E}} (1 - |\sigma|^{2})^{2 + \alpha} |u - v|^{2} \left(\frac{1}{(1 - |\varphi|^{2})^{2 + \alpha}} + \frac{1}{(1 - |\psi|^{2})^{2 + \alpha}} \right) d\mu \end{split}$$

Corollary

Consider the following operators

$$\sigma u \mathcal{C}_{\varphi}, \ \sigma v \mathcal{C}_{\psi}, \ (1-|\sigma|^2)^{1+\frac{\alpha}{2}}(u-v)\mathcal{C}_{\varphi} \ \text{and} \ (1-|\sigma|^2)^{1+\frac{\alpha}{2}}(u-v)\mathcal{C}_{\psi}$$

from A_{α}^2 or H^2 to $L^2(\mu)$. Then $uC_{\varphi} - vC_{\psi}$ is Hilbert-Schmidt if and only if all of the four operators are Hilbert-Schmidt.

Questions?

Thank You!