A PROBLEM OF ZAGIER ON QUADRATIC POLYNOMIALS AND CONTINUED FRACTIONS

MARIE JAMESON

Abstract

For non-square $1<D \equiv 0,1(\bmod 4)$, Zagier [9] defined the following summatory function using integral quadratic polynomials: $$
A_{D}(x):=\sum_{\substack{\operatorname{disc}(Q)=D \\ Q(\infty)<0<Q(x)}} Q(x) .
$$

He proved that $A_{D}(x)$ is a constant function depending on D. For rational x, it turns out that this sum is finite. Here we address the infinitude of the number of quadratic polynomials for nonrational x, and more importantly address some problems posed by Zagier related to characterizing the polynomials which arise in terms of the continued fraction expansion of x. In addition, we study the indivisibility of the constant functions $A_{D}(x)$ as D varies.

1. Introduction and Statement of Results

Following Zagier [9], we consider the function $A_{D}(x)$ defined as follows: for any real number x and any positive non-square integer D which is congruent to 0 or 1 modulo 4 , consider all quadratic polynomials with integer coefficients and discriminant D which are negative at infinity and positive at x. For any such quadratic function Q, we have that $Q(x)$ is positive and wish to find the sum of these values. That is, we consider the function

$$
\begin{equation*}
A_{D}(x):=\sum_{\substack{\operatorname{disc}(Q)=D \\ Q(\infty)<0<Q(x)}} Q(x) . \tag{1.1}
\end{equation*}
$$

It is known that the function $A_{D}(x)$ is determined by its behavior for $x \in[0,1)$ (see Lemma 2.1), so we shall always assume that $0 \leq x<1$. For example, when $x=0$ and $D=5$, there are only two quadratic polynomials with the desired properties: $Q(X)=-X^{2}+X+1$ and $Q(X)=-X^{2}-X+1$, giving $A_{5}(0)=1+1=2$. It turns out that much more is true about these functions. Zagier [9] proved that each function $A_{D}(x)$ is constant (although the polynomials which arise in the sum vary with x). In particular, we have the strange fact that $A_{5}(1 / \pi)=A_{5}(0)=2$. Notice then that for $x=1 / \pi$, there must be infinitely many quadratic polynomials in the sum, since $1 / \pi$ is irrational and does not have degree 2 over \mathbb{Q}.

In this paper, we address the following natural question regarding the function $A_{D}(x)$: given a value of x, how can we characterize the quadratic polynomials with the desired properties? In [9], Zagier investigated this question, and he made a speculation which involves quantities which arise from the continued fraction expansion of x.

To make this precise, we must first fix some notation. For x a real number with $0<x<1$, we may write x as a continued fraction

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}=\left[0 ; a_{1}, a_{2}, \ldots\right]
$$

using integers $a_{1}, a_{2}, \ldots \geq 1$. Note that this continued fraction terminates if and only if $x \in \mathbb{Q}$. As in [9], we now define a useful sequence of real numbers $\delta_{0}, \delta_{1}, \ldots$ by

$$
\delta_{0}=1, \quad \delta_{1}=x, \quad \delta_{n+1}=\delta_{n-1}-a_{n} \delta_{n} \quad(n \geq 1)
$$

Zagier made the following speculation based on numerical evidence for $D=5$ and $x=\frac{1}{\pi}$: Speculation. Suppose that $D=5$ and $0<x<1$. Then the summands which appear on the right side of (1.1) are: all of the expressions

$$
-\delta_{n+1}^{2}+\delta_{n} \delta_{n+1}+\delta_{n}^{2}
$$

together with some of the expressions

$$
-\delta_{n+1}^{2}-\delta_{n} \delta_{n+1}+\delta_{n}^{2}
$$

Of course, answering this question amounts to characterizing the set of polynomials

$$
\begin{equation*}
\Omega_{D}(x):=\left\{a X^{2}+b X+c: D=b^{2}-4 a c, a<0<a x^{2}+b x+c\right\} . \tag{1.2}
\end{equation*}
$$

Here we offer a theorem which characterizes $\Omega_{D}(x)$. In Section 2.3, we define sets of 4-tuples $\Omega_{D}^{0}(x)$ and corresponding quadratic polynomials $\psi(a, b, c, n ; X)$, and we prove the following theorem.

Theorem 1.1. Fix a real number x with $0<x<1$, and a positive integer $D \equiv 0,1(\bmod 4)$. If D is not a square, we have

$$
\Omega_{D}(x)=\left\{\psi(a, b, c, n ; X):(a, b, c, n) \in \Omega_{D}^{0}(x)\right\}
$$

If $D=m^{2}$ for some positive integer m, we have

$$
\begin{aligned}
\Omega_{D}(x) & =\left\{\psi(a, b, c, n ; X):(a, b, c, n) \in \Omega_{D}^{0}(x)\right\} \\
& \cup\left\{\psi(-a, m, 0, n ; X): n \geq 0 \text { and } 1 \leq a \leq a_{n+1} m\right\}
\end{aligned}
$$

Remark. As discussed in [9], $A_{D}(x)$ can also be defined when for square $D=m^{2}$. In that case, we define $A_{m^{2}}^{*}(x)$ to be the sum in (1.1), and set

$$
A_{m^{2}}(x):=A_{m^{2}}^{*}(x)-\frac{1}{2} \overline{\mathbb{B}}_{2}(m x)+\frac{1}{2} m^{2} \kappa(x)
$$

where $\mathbb{B}_{2}(x):=x^{2}-x+\frac{1}{6}$ is the second Bernoulli polynomial, $\overline{\mathbb{B}}_{2}(x):=\mathbb{B}_{2}(x-\lfloor x\rfloor)$, and

$$
\kappa(x):=\left\{\begin{array}{ll}
1 / q^{2} & x=p / q \text { with }(p, q)=1 \\
0 & x \text { is irrational }
\end{array} .\right.
$$

This theorem provides the following corollary.
Corollary 1.2. For $x \in \mathbb{R}$ and D as above, we have that

$$
\# \Omega_{D}(x)<+\infty \Longleftrightarrow x \in \mathbb{Q} .
$$

Remark. By a result of Zagier (Theorem 1 of [9]) which states that $A_{D}(x)$ is a rational constant, this is trivial except for x such that $[\mathbb{Q}(x): \mathbb{Q}]=2$ (see Lemma 2.3).

The description of $\Omega_{D}^{0}(x)$ given in Section 2.3 when $D=5$ will show that we have indeed established Zagier's speculation. Namely, we have the following corollary.

Corollary 1.3. Suppose that $D=5$ and $0<x<1$. Then the summands which appear on the right side of (1.1) are all of the expressions

$$
-\delta_{n+1}^{2}+\delta_{n} \delta_{n+1}+\delta_{n}^{2}
$$

together with some of the expressions

$$
-\delta_{n+1}^{2}-\delta_{n} \delta_{n+1}+\delta_{n}^{2}
$$

Furthermore, if $a_{n} \neq 1$ and $a_{n+1} \neq 1$ for a value of n, then the expression $-\delta_{n+1}^{2}-\delta_{n} \delta_{n+1}+\delta_{n}^{2}$ does appear as a summand.

Remark. It is natural to wonder what the generalization of Zagier's speculation should be for other D. We will show that for non-square D, the summands which appear are of the form $a \delta_{n+1}^{2}+b \delta_{n} \delta_{n+1}+c \delta_{n}^{2}$, where $a X^{2}+b X+c \in \Omega_{D}(0)$. Furthermore, if $a X^{2}+b X+c \in \Omega_{D}(0)$ comes from a reduced binary quadratic form, then all of the terms $a \delta_{n+1}^{2}+b \delta_{n} \delta_{n+1}+c \delta_{n}^{2}$ appear in the sum.

By Zagier's theorem, we know that each function $A_{D}(x)$ is a rational constant which depends only on D. Here are the first few constant functions $A_{D}(x)$ for non-square D.

$$
\begin{array}{c|ccccccc}
D & 5 & 8 & 12 & 13 & 17 & 20 & 21 \\
\hline A_{D}(x) & 2 & 5 & 10 & 10 & 20 & 22 & 20
\end{array}
$$

It is natural to wonder about their properties as D varies. Here we study the distribution of these numbers modulo primes ℓ, and we prove the following theorem using the theory of Cohen-Eisenstein series.

Theorem 1.4. Suppose that $\ell>5$ is prime, and let p be any prime for which $p \equiv-1$ $(\bmod \ell)$ and $p \equiv 2,3(\bmod 5)$. Then there exists an integer $1 \leq n_{p} \leq \frac{5}{4}(p+1)$ for which $A_{p n_{p}}(x) \not \equiv 0(\bmod \ell)$.

As a corollary, we obtain the following.
Corollary 1.5. If $\ell>5$ is prime and $\epsilon>0$, then for all sufficiently large X we have that

$$
\#\left\{0<D \equiv 0,1 \quad(\bmod 4) \leq X: \ell \nmid A_{D}(x)\right\} \geq\left(\frac{1}{\sqrt{5}(\ell-1)}-\epsilon\right) \frac{\sqrt{X}}{\log X}
$$

2. Nuts and Bolts

Before we prove Theorem 1.1 and its corollaries, we must first recall some basic facts and definitions regarding $A_{D}(x), \Omega_{D}(x)$, and continued fractions. We will then use Zagier's speculation as a model to define a helpful function $\psi(a, b, c, n ; X)$ and various sets $\Omega_{D}^{i}(x)$.
2.1. Background on Continued Fractions. First we recall some classical facts regarding continued fractions. The following facts can be found in [4] or Section 10 of [9]. Recall that for any real number x with $0<x<1$, we may write x as a continued fraction

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}=\left[0 ; a_{1}, a_{2}, \ldots\right]
$$

using integers $a_{1}, a_{2}, \ldots \geq 1$, and that this continued fraction terminates if and only if $x \in \mathbb{Q}$. The convergents

$$
\frac{p_{n}}{q_{n}}=\left[0 ; a_{1}, \ldots, a_{n}\right]
$$

of the continued fraction are given by: $p_{-1}=1, q_{-1}=0, p_{0}=0, q_{0}=1$, and

$$
\begin{aligned}
p_{n} & =a_{n} p_{n-1}+p_{n-2} \\
q_{n} & =a_{n} q_{n-1}+q_{n-2} .
\end{aligned}
$$

It is known that the value of x is greater than that of any even order convergent p_{n} / q_{n}, and less than that of any odd order convergent, and for all $n \geq 0$, we have

$$
\begin{equation*}
q_{n} p_{n-1}-p_{n} q_{n-1}=(-1)^{n} \tag{2.1}
\end{equation*}
$$

(see Theorems 8 and 2 of [4]).
We have defined $\delta_{0}, \delta_{1}, \ldots$ by

$$
\delta_{0}=1, \quad \delta_{1}=x, \quad \delta_{n+1}=\delta_{n-1}-a_{n} \delta_{n} \quad(n \geq 1)
$$

One can check that

$$
\delta_{n+1}=\left|p_{n}-q_{n} x\right|,
$$

that $1=\delta_{0}>\delta_{1}>\delta_{2}>\cdots>0$, and that

$$
\frac{\delta_{n}}{\delta_{n-1}}=\left[0 ; a_{n}, a_{n+1}, \ldots\right]
$$

2.2. Elementary Facts about $A_{D}(x)$ and $\Omega_{D}(x)$. Here we state some important properties of $A_{D}(x)$ and $\Omega_{D}(x)$. All of the results in this section are contained in [9]. First we have the following elementary observation.

Lemma 2.1. For any real number x and any positive integer D which is congruent to 0 or 1 modulo 4, we have that

$$
A_{D}(x)=A_{D}(x+1)
$$

Proof. First suppose that D is not a square. We have that

$$
\begin{aligned}
A_{D}(x) & =\sum_{\substack{a, b, c \in \mathbb{Z} \\
b^{2}-4 a c=D \\
a<0<a x^{2}+b x+c}}\left(a x^{2}+b x+c\right) \\
& =\sum_{\substack{a, b, c \in \mathbb{Z} \\
(b-2 a)^{2}-4 a(a-b+c)=D \\
a<0<a(x+1)^{2}+(b-2 a)(x+1)+(a-b+c)}}\left(a(x+1)^{2}+(b-2 a)(x+1)+(a-b+c)\right) \\
& =\sum_{\substack{\alpha, \beta, \gamma \in \mathbb{Z} \\
\beta^{2}-4 \alpha \gamma=D}}^{\alpha<0<\alpha(x+1)^{2}+\beta(x+1)+\gamma} \\
& =A_{D}(x+1),
\end{aligned}
$$

as desired. If D is a square, the proof follows similarly.
Next, we recall a deeper theorem of Zagier:
Lemma 2.2 (Theorem 1 and Supplement to Theorem 1 of [9]). For D as described above, the function $A_{D}(x)$ has a constant rational value which we denote α_{D}. If D is the discriminant of a real quadratic field, we have that

$$
A_{D}(x)=\alpha_{D}=-5 L\left(-1, \chi_{D}\right)
$$

Remark. In fact, Zagier [9] described α_{D} in terms of the coefficients of the weight $\frac{5}{2}$ CohenEisenstein series $H_{2}(z)$ discussed in Section 5.

Finally, we summarize previous results regarding $\# \Omega_{D}(x)$.
Lemma 2.3. For x and D as described above, the following are true:
(a) If $x \in \mathbb{Q}$, then $\# \Omega_{D}(x)<+\infty$.
(b) If $x \in \mathbb{R} \backslash \mathbb{Q}$ and x is not algebraic of degree 2 over \mathbb{Q}, then $\# \Omega_{D}(x)=+\infty$.

Proof. First we prove (a). If $x \in \mathbb{Q}$, then we may write $x=p / q$ and note that if $a X^{2}+b X+c \in$ $\Omega_{D}(x)$, then we have

$$
D q^{2}=|b q+2 a p|^{2}+4|a|\left|a p^{2}+b p q+c q^{2}\right| .
$$

This bounds each of a, b, and c, so $\# \Omega_{D}(x)<+\infty$ (note: this corrects a typo in [9]).
To prove (b), let $x \in \mathbb{R} \backslash \mathbb{Q}$ and suppose that x is not algebraic of degree 2 over \mathbb{Q}, and let D as above be non-square (if D is a square, then the proof follows similarly). Suppose for contradiction that $\# \Omega_{D}(x)<+\infty$. Then since $A_{D}(x)$ has a constant integral value, one can solve

$$
\sum_{\substack{a, b, c \in \mathbb{Z} \\ b^{2}-4 a c=D \\ a<0<a x^{2}+b x+c}}\left(a x^{2}+b x+c\right)=A_{D}(x)
$$

to find that x is the root of a quadratic polynomial (this equation cannot be trivial since each polynomial has negative leading coefficient). This contradicts our choice of x.
2.3. Defining $\psi(a, b, c, n ; X)$ and $\Omega_{D}^{0}(x)$. Let us explicitly write down the polynomials which Zagier has mentioned: since

$$
\delta_{n}=\left|p_{n-1}-q_{n-1} x\right|=(-1)^{n}\left(p_{n-1}-q_{n-1} x\right)
$$

by Theorem 8 of [4], we may substitute to find that these expressions from Zagier's speculation (and Corollary 1.3) can be written as the values of the polynomials

$$
-\left(p_{n}-q_{n} X\right)^{2} \mp\left(p_{n}-q_{n} X\right)\left(p_{n-1}-q_{n-1} X\right)+\left(p_{n-1}-q_{n-1} X\right)^{2}
$$

when we plug in the value x for the variable X.
Now we extend this speculation as follows: for $0<x<1$ and $D \equiv 0,1(\bmod 4)$, we consider polynomials $a X^{2}+b X+c \in \Omega_{D}(0)$ and nonnegative integers $n \geq 0$ and use them to build polynomials of the form

$$
a\left(p_{n}-q_{n} X\right)^{2}-b\left(p_{n}-q_{n} X\right)\left(p_{n-1}-q_{n-1} X\right)+c\left(p_{n-1}-q_{n-1} X\right)^{2} .
$$

For ease of notation, we write

$$
\begin{equation*}
\Omega_{D}^{\prime}:=\left\{(a, b, c, n) \in \mathbb{Z}^{4}: b^{2}-4 a c=D, a<0<c, n \geq 0\right\} \tag{2.2}
\end{equation*}
$$

For $(a, b, c, n) \in \mathbb{Z}^{3} \times \mathbb{Z}_{\geq 0}$, we build the polynomial

$$
\begin{aligned}
\psi(a, b, c, n ; X) & :=a\left(p_{n}-q_{n} X\right)^{2}-b\left(p_{n}-q_{n} X\right)\left(p_{n-1}-q_{n-1} X\right)+c\left(p_{n-1}-q_{n-1} X\right)^{2} \\
& =\left(a X^{2}+b X+c\right) \left\lvert\,\left(\begin{array}{cc}
-q_{n} & p_{n} \\
q_{n-1} & -p_{n-1}
\end{array}\right)\right.,
\end{aligned}
$$

noting that $\psi(a, b, c, n ; x)=a \delta_{n+1}^{2}+b \delta_{n+1} \delta_{n}+c \delta_{n}^{2}$. Here, the slash operator is defined by $f(X) \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(c X+d)^{2} f\left(\frac{a X+b}{c X+d}\right)\right.$ for quadratic polynomials f and 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Here, we must make the following remark regarding the case where $x \in \mathbb{Q}$. Since the number of polynomials in $\Omega_{D}(x)$ is finite if $x \in \mathbb{Q}$, rational values of x are less interesting than irrational values. However, the arguments in this paper hold for $x \in \mathbb{Q}$ as well as for $x \notin \mathbb{Q}$ (unless otherwise noted). One must be careful in only one regard: if $x=p / q$ is a rational number between 0 and 1 , then its continued fraction expansion terminates, so $x=\left[0 ; a_{1}, a_{2}, \ldots, a_{N}\right]$, for positive integers N and a_{1}, \ldots, a_{N}. Thus we can only define finitely many convergents

$$
\frac{p_{-1}}{q_{-1}}, \frac{p_{0}}{q_{0}}, \ldots, \frac{p_{N}}{q_{N}}
$$

noting that $p_{N} / q_{N}=x$. We also have finitely many $\delta_{0}, \delta_{1}, \ldots, \delta_{N}, \delta_{N+1}$, noting that $\delta_{N}=1 / q^{2}$ and $\delta_{N+1}=0$. Thus, when considering the case where $x \in \mathbb{Q}$, one must amend the arguments which follow by restricting his attention only to values which "make sense" (for example, only consider $\psi(a, b, c, n ; X)$ for $n \leq m)$. Thus, for simplicity of exposition, we will henceforth only describe the case where $x \notin \mathbb{Q}$, and leave rational values of x to the reader.

At first glance, it seems correct to consider the polynomials $\psi(a, b, c, n ; X)$ for $(a, b, c, n) \in$ Ω_{D}^{\prime} since adding up the resulting values gives $A_{D}(x)$ (for non-square D) as desired:

$$
\begin{aligned}
& \sum_{(a, b, c, n) \in \Omega_{D}^{\prime}} \psi(a, b, c, n ; x)=\sum_{\substack{(a, b, c) \in \mathbb{Z}^{3} \\
a c 0<c \\
b^{2}-4 a c=D}} \sum_{n \geq 0}\left(a \delta_{n+1}^{2}+b \delta_{n+1} \delta_{n}+c \delta_{n}^{2}\right)=\sum_{\substack{(a, b, c) \in \mathbb{Z}^{3} \\
a<0<c \\
b^{2}-4 a c=D}} \sum_{n \geq 0}\left(a \delta_{n+1}^{2}+c \delta_{n}^{2}\right) \\
& =\sum_{\substack{(a, b, c) \in \mathbb{Z}^{3} \\
a<0<c \\
b^{2}-4 a c=D \\
-a<\sqrt{\frac{D-b^{2}}{4}}<c}} \sum_{n \geq 0}\left(\left(a \delta_{n+1}^{2}+c \delta_{n}^{2}\right)+\left(-c \delta_{n+1}^{2}-a \delta_{n}^{2}\right)\right)+\sum_{\substack{(a, b, c) \in \mathbb{Z}^{3} \\
a a 0<c \\
b^{2}-4 a c=D \\
-a=c=\sqrt{\frac{D-b^{2}}{4}}}} \sum_{n \geq 0}\left(a \delta_{n+1}^{2}+c \delta_{n}^{2}\right) \\
& =\sum_{(a, b, c) \in \mathbb{Z}^{3}} \sum_{n \geq 0}(c-a)\left(\delta_{n}^{2}-\delta_{n+1}^{2}\right)+\sum_{(a, b, c) \in \mathbb{Z}^{3}} \sum_{n \geq 0} c\left(\delta_{n}^{2}-\delta_{n+1}^{2}\right) \\
& \begin{array}{cc}
a<0<c \\
b^{2}-4 a c=D \\
-a<\sqrt{\frac{D-b^{2}}{4}}<c & a<0<c \\
b^{2}-4 a c=D \\
-a=c=\sqrt{\frac{D-b^{2}}{4}}
\end{array} \\
& =\sum_{\substack{(a, b, c) \in \mathbb{Z}^{3} \\
a<c \\
b^{2}-4 a c=D \\
-a<\sqrt{\frac{D-b^{2}}{L^{2}}<c}}}(c-a)+\sum_{\begin{array}{c}
(a, b, c) \in \mathbb{Z}^{3} \\
a<0<c \\
b^{2}-4 a c=D \\
-a=c=\sqrt{\frac{D-b^{2}}{L^{2}}}
\end{array}} c=\sum_{\substack{(a, b, c) \in \mathbb{Z}^{3} \\
a \\
b^{2}<0<c \\
b^{2}-4 a c=D}} c=A_{D}(0)=A_{D}(x) .
\end{aligned}
$$

However, the story is not so simple; as Zagier notes in [9], only some of the $\psi(a, b, c, n ; x)$ actually appear as summands on the right hand side of (1.1). In fact, if $(a, b, c, n) \in \Omega_{D}^{\prime}$, then one can easily use (2.1) to check that $\psi(a, b, c, n ; X)$ has discriminant D, but it is not necessarily true that $\psi(a, b, c, n ; X)_{2}<0$ or that $\psi(a, b, c, n ; x)>0$ as one would require, or that $\psi(a, b, c, n ; X)$ is distinct from other polynomials of the same form. Here, $\psi(a, b, c, n ; X)_{2}$ denotes the coefficient of X^{2} in the polynomial $\psi(a, b, c, n ; X)$.

Thus we define $\Omega_{D}^{0}(x) \subset \Omega_{D}^{\prime}$ by

$$
\Omega_{D}^{0}(x):=\left\{\begin{array}{cc}
\psi(a, b, c, n ; X)_{2}<0<\psi(a, b, c, n ; x), \text { and } \\
(a, b, c, n) \in \Omega_{D}^{\prime}: & \psi(a, b, c, n ; X) \neq \psi(\alpha, \beta, \gamma, m ; X) \\
& \text { for all }(\alpha, \beta, \gamma, m) \in \Omega_{D}^{\prime} \text { with } m>n
\end{array}\right\} .
$$

First note that for fixed n, all of the polynomials of the form $\psi(a, b, c, n ; X)$ are distinct since we have the following:

Lemma 2.4. If $(a, b, c, n),(\alpha, \beta, \gamma, n) \in \mathbb{Z}^{3} \times \mathbb{Z}_{\geq 0}$ satisfy

$$
\psi(a, b, c, n ; X)=\psi(\alpha, \beta, \gamma, n ; X)
$$

then $(a, b, c, n)=(\alpha, \beta, \gamma, n)$.
Proof. Suppose that $\psi(a, b, c, n ; X)=\psi(\alpha, \beta, \gamma, n ; X)$. Then substituting p_{n} / q_{n} for X gives $c=\gamma$ (since $p_{n-1}-q_{n-1} p_{n} / q_{n} \neq 0$ by (2.1)). Similarly, $a=\alpha$, so it follows that $b=\beta$ as desired.

Also note that we have

$$
\left\{\psi(a, b, c, n ; X):(a, b, c, n) \in \Omega_{D}^{0}(x)\right\} \subseteq \Omega_{D}(x)
$$

by construction, and Theorem 1.1 asserts that this is an equality for non-square D.
2.4. A Useful Partition of $\Omega_{D}^{\prime} \backslash \Omega_{D}^{0}(x)$. In order to prove Theorem 1.1, we will develop a better understanding of the behavior of $\psi(a, b, c, n ; X)$ for $(a, b, c, n) \in \Omega_{D}^{\prime} \backslash \Omega_{D}^{0}(x)$. Thus we will study the sets

$$
\begin{aligned}
& \psi(a, b, c, n ; X)_{2}<0<\psi(a, b, c, n ; x), \text { and } \\
& \Omega_{D}^{1}(x):=\left\{\begin{array}{c}
\left.\psi, b, c, n) \in \Omega_{D}^{\prime}: \begin{array}{c}
\text { there exists }(\alpha, \beta, \gamma, m) \in \Omega_{D}^{\prime} \text { with } m>n \text { and } \\
\psi(a, b, c, n ; X)=\psi(\alpha, \beta, \gamma, m ; X)
\end{array}\right\} \\
\Omega_{D}^{2}(x)
\end{array}\right\}=\left\{(a, b, c, n) \in \Omega_{D}^{\prime}: \psi(a, b, c, n ; X)_{2}>0>\psi(a, b, c, n ; x)\right\} \\
& \Omega_{D}^{3}(x):=\left\{(a, b, c, n) \in \Omega_{D}^{\prime}: \psi(a, b, c, n ; X)_{2}<0, \psi(a, b, c, n ; x)<0\right\} \\
& \Omega_{D}^{4}(x):=\left\{(a, b, c, n) \in \Omega_{D}^{\prime}: \psi(a, b, c, n ; X)_{2}>0, \psi(a, b, c, n ; x)>0\right\} \\
& \Omega_{D}^{5}(x):=\left\{(a, b, c, n) \in \Omega_{D}^{\prime}: \psi(a, b, c, n ; X)_{2}=0 \text { or } \psi(a, b, c, n ; x)=0\right\}
\end{aligned}
$$

and for convenience we will often drop the dependence on x. We wish to study the behavior of these sets with respect to the map $\phi: \mathbb{Z}^{3} \times \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}^{3} \times \mathbb{Z}_{>0}$ given by

$$
(a, b, c, n) \mapsto\left(-c,-b-2 a_{n+1} c,-a-a_{n+1} b-a_{n+1}^{2} c, n+1\right),
$$

which is found by taking the coefficients of

$$
-\left(a X^{2}+b X+c\right) \left\lvert\,\left(\begin{array}{cc}
0 & 1 \\
1 & a_{n+1}
\end{array}\right)\right.
$$

We first state the following straightforward lemma, whose proof we leave to the reader.
Lemma 2.5. The map ϕ satisfies the following:
(a) if $(\alpha, \beta, \gamma, n+1)=\phi(a, b, c, n)$, then $b^{2}-4 a c=\beta^{2}-4 \alpha \gamma$,
(b) ϕ is bijective with inverse given by

$$
(a, b, c, n) \mapsto\left(-a_{n}^{2} a+a_{n} b-c, 2 a_{n} a-b,-a, n-1\right),
$$

(c) and $\psi(a, b, c, n ; X)=-\psi(\phi(a, b, c, n) ; X)$.

Now, we give the following lemma, which describes the behavior of the sets Ω_{D}^{i} with respect to the map ϕ.

Lemma 2.6. We have that
(a) $\phi: \Omega_{D}^{3} \rightarrow \Omega_{D}^{4}$ is a bijection, and
(b) $\phi: \Omega_{D}^{1} \rightarrow \Omega_{D}^{2}$ is a bijection.

Proof. First we prove (a). Let us consider the map $\phi: \Omega_{D}^{3} \rightarrow \Omega_{D}^{4}$. We need only show that ϕ maps Ω_{D}^{3} into Ω_{D}^{4}, and that the map ϕ^{-1} given above maps Ω_{D}^{4} into Ω_{D}^{3}.

Suppose that $(a, b, c, n) \in \Omega_{D}^{3}$. To establish that $\phi(a, b, c, n) \in \Omega_{D}^{4}$, (by Lemma 2.5(a)) we need only check that

$$
\begin{aligned}
-c & <0 \\
-a-a_{n+1} b-a_{n+1}^{2} c & >0 \\
\psi(\phi(a, b, c, n) ; X)_{2} & >0 \\
\psi(\phi(a, b, c, n) ; x) & >0 .
\end{aligned}
$$

Note that the first inequality is clear since $c>0$, and the third and fourth inequalities hold by Lemma 2.5 (c) since $(a, b, c, n) \in \Omega_{D}^{3}$. To establish the second inequality, note that

$$
\psi(\phi(a, b, c, n) ; x)=-c \delta_{n+2}^{2}+\left(-b-2 a_{n+1} c\right) \delta_{n+2} \delta_{n+1}+\left(-a-a_{n+1} b-a_{n+1}^{2} c\right) \delta_{n+1}^{2}>0
$$

and thus

$$
-a-a_{n+1} b-a_{n+1}^{2} c>\frac{\delta_{n+2}}{\delta_{n+1}}\left(c \frac{\delta_{n+2}}{\delta_{n+1}}+b+2 a_{n+1} c\right) .
$$

Thus we have the desired inequality if $b \geq-c \frac{\delta_{n+2}}{\delta_{n+1}}-2 a_{n+1} c$. If not,

$$
-b>c \frac{\delta_{n+2}}{\delta_{n+1}}+2 a_{n+1} c
$$

so

$$
-a-a_{n+1} b-a_{n+1}^{2} c>-a+a_{n+1} c \frac{\delta_{n+2}}{\delta_{n+1}}+a_{n+1}^{2} c>0
$$

as desired.
Now, suppose that $(a, b, c, n) \in \Omega_{D}^{4}$. Notice that $n \geq 1$, since if $n=0$, we would have $\psi(a, b, c, 0 ; X)_{2}=\left(a X^{2}+b X+c\right)_{2}=a<0$. Thus $\phi^{-1}(a, b, c, n)$ is defined, and one can show that $\phi^{-1}(a, b, c, n) \in \Omega_{D}^{3}$ by a similar argument as above. This completes the proof of (a).

In order to establish (b), let us consider the map $\phi: \Omega_{D}^{1} \rightarrow \Omega_{D}^{2}$. As above, we need only show that ϕ maps Ω_{D}^{1} into Ω_{D}^{2}, and that ϕ^{-1} maps Ω_{D}^{2} into Ω_{D}^{1}.

First suppose that $(a, b, c, n) \in \Omega_{D}^{2}$. As above, one can check that both $\phi(a, b, c, n) \in$ $\Omega_{D}^{1} \cup \Omega_{D}^{0}$ and $\phi^{-1}(a, b, c, n) \in \Omega_{D}^{1} \cup \Omega_{D}^{0}$. Thus it follows that $\phi^{-1}(a, b, c, n) \in \Omega_{D}^{1}$, as desired.

Now suppose that $(a, b, c, n) \in \Omega_{D}^{1}$ and choose $(\alpha, \beta, \gamma, m) \in \Omega_{D}^{\prime}$ with m minimal such that $m>n$ and $\psi(a, b, c, n ; X)=\psi(\alpha, \beta, \gamma, m ; X)$. As before, to check that $\phi(a, b, c, n) \in \Omega_{D}^{2}$, we need only show that $-a-a_{n+1} b-a_{n+1}^{2} c>0$.

First, consider the case where $m=n+1$. Then we have that

$$
\begin{aligned}
\psi(\alpha, \beta, \gamma, n+1 ; X) & =\psi(a, b, c, n ; X)=-\psi(\phi(a, b, c, n) ; X) \\
& =\psi\left(c, b+2 a_{n+1} c, a+a_{n+1} b+a_{n+1}^{2} c, n+1\right)
\end{aligned}
$$

so by Lemma 2.4 we have that $(\alpha, \beta, \gamma)=\left(c, b+2 a_{n+1} c, a+a_{n+1} b+a_{n+1}^{2} c\right) \notin \Omega_{D}^{\prime}$, which is a contradiction, so we cannot have $m=n+1$.

Now, suppose that $m=n+2$. Since $\psi(a, b, c, n ; X)=\psi(\alpha, \beta, \gamma, m ; X)$, it follows by Lemma 2.4 that $\phi(a, b, c, n)=\phi^{-1}(\alpha, \beta, \gamma, m)$, and thus

$$
\left(-c,-b-2 c a_{n+1},-a-b a_{n+1}-c a_{n+1}^{2}\right)=\left(-\alpha a_{m}^{2}+\beta a_{m}-\gamma, 2 \alpha a_{m}-b,-\alpha\right) .
$$

Thus we have that $-a-a_{n+1} b-a_{n+1}^{2} c>0$ as desired.
Finally, consider the case where $m>n+2$, and here assume for the sake of contradiction that $-a-a_{n+1} b-a_{n+1}^{2} c \leq 0$. By minimality of m, note that $\phi^{-1}(\alpha, \beta, \gamma, m) \notin \Omega_{D}^{2}$, so it follows that

$$
-\alpha a_{m}^{2}+\beta a_{m}-\gamma \geq 0
$$

Since $\psi(\phi(a, b, c, n) ; X)=\psi\left(\phi^{-1}(\alpha, \beta, \gamma, m) ; X\right)$, we have

$$
\begin{aligned}
c \delta_{n+2}^{2}+\left(a+b a_{n+1}+c a_{n+1}^{2}\right) \delta_{n+1}^{2} & +\left(b+2 c a_{n+1}\right) \delta_{n+1} \delta_{n+2} \\
& =\left(\alpha a_{m}^{2}-\beta a_{m}+\gamma\right) \delta_{m}^{2}+\alpha \delta_{m-1}^{2}+\left(\beta-2 \alpha a_{m}\right) \delta_{m-1} \delta_{m} \\
c q_{n+1}^{2}+\left(a+b a_{n+1}+c a_{n+1}^{2}\right) q_{n}^{2} & -\left(b+2 c a_{n+1}\right) q_{n} q_{n+1} \\
& =\left(\alpha a_{m}^{2}-\beta a_{m}+\gamma\right) q_{m-1}^{2}+\alpha q_{m-2}^{2}-\left(\beta-2 \alpha a_{m}\right) q_{m-2} q_{m-1}
\end{aligned}
$$

and thus we have

$$
\begin{aligned}
& \left(\beta-2 \alpha a_{m}\right) \delta_{m-1} \delta_{m}-\left(b+2 c a_{n+1}\right) \delta_{n+1} \delta_{n+2} \\
& \quad=c \delta_{n+2}^{2}+\left(a+b a_{n+1}+c a_{n+1}^{2}\right) \delta_{n+1}^{2}-\left(\alpha a_{m}^{2}-\beta a_{m}+\gamma\right) \delta_{m}^{2}-\alpha \delta_{m-1}^{2} \geq 0 \\
& \left(\beta-2 \alpha a_{m}\right) q_{m-2} q_{m-1}-\left(b+2 c a_{n+1}\right) q_{n} q_{n+1} \\
& \quad=-c q_{n+1}^{2}-\left(a+b a_{n+1}+c a_{n+1}^{2}\right) q_{n}^{2}+\left(\alpha a_{m}^{2}-\beta a_{m}+\gamma\right) q_{m-1}^{2}+\alpha q_{m-2}^{2} \leq 0
\end{aligned}
$$

Together, these give

$$
\frac{\delta_{n+1} \delta_{n+2}}{\delta_{m-1} \delta_{m}} \leq \frac{\beta-2 \alpha a_{m}}{b+2 c a_{n+1}} \leq \frac{q_{n} q_{n+1}}{q_{m-2} q_{m-1}} .
$$

This is a contradiction, since it is known that $\frac{q_{n} q_{n+1}}{q_{m-2} q_{m-1}}<1<\frac{\delta_{n+1} \delta_{n+2}}{\delta_{m-1} \delta_{m}}$.
Now, we present a lemma which highlights the differences between the case where D is a square and the case where D is not a square.

Lemma 2.7. (a) D is not a square, then

$$
\sum_{(a, b, c, n) \in \Omega_{D}^{5}} \psi(a, b, c, n ; x)=0
$$

(b) If $D=m^{2}$ for some positive integer m, then

$$
\sum_{(a, b, c, n) \in \Omega_{D}^{5}} \psi(a, b, c, n ; x)=\frac{\mathbb{B}(m x)-\overline{\mathbb{B}}(m x)}{2}
$$

(c) We have that

$$
\sum_{\substack{n \geq 0 \\ 1 \leq a \leq m a_{n+1}}} \psi(-a, m, 0 ; x)=\frac{1}{2} \mathbb{B}(m x)-\frac{1}{12}+\frac{m^{2}}{2}-\frac{m^{2}}{2} \kappa(x) .
$$

Proof. First we consider the case where D is not a square. Let $(a, b, c, n) \in \Omega_{D}^{\prime}$ and set $\psi(a, b, c, n ; X)=\alpha X^{2}+\beta X+\gamma$. One can check that $\beta^{2}-4 \alpha \gamma=b^{2}-4 a c=D$, so since D is not a square, we have that $\psi(a, b, c, n ; X)_{2}=\alpha \neq 0$. Thus

$$
\sum_{(a, b, c, n) \in \Omega_{D}^{5}} \psi(a, b, c, n ; x)=0
$$

completing the proof of (a).
Now set $D=m^{2}$. We wish to characterize $(a, b, c, n) \in \Omega_{D}^{\prime}$ such that $\psi(a, b, c, n ; X)_{2}=0$. That is, we wish to study $(a, b, c, n) \in \Omega_{D}^{\prime}$ with

$$
b=a \frac{q_{n}}{q_{n-1}}+c \frac{q_{n-1}}{q_{n}} .
$$

For such tuples, it follows that

$$
\begin{aligned}
\psi(a, b, c, n ; X) & =\left((-1)^{n}\left(a q_{n}^{2}-c q_{n-1}^{2}\right) / q_{n} q_{n-1}\right) X+(-1)^{n+1}\left(a p_{n} q_{n}-c p_{n-1} q_{n-1}\right) / q_{n} q_{n-1} \\
& =(-1)^{n+1}\left(m X-n_{0}\right)
\end{aligned}
$$

where n_{0} is a positive integer and $n \neq 0$.
For such tuples with $n=1$, one can check that $(a, b, c, 1)=\left(-n_{0}, m-2 n_{0} a_{1}, m a_{1}-n_{0} a_{1}^{2}, 1\right)$. Here we have

$$
\phi^{-1}\left(-n_{0}, m-2 n_{0} a_{1}, m a_{1}-n_{0} a_{1}^{2}, 1\right)=\left(0,-m, n_{0}, 0\right) \notin \Omega_{D}^{\prime},
$$

but if $n>1$ we have

$$
\phi^{-1}(a, b, c, n)=\left(\frac{a_{n} a q_{n-2}}{q_{n-1}}-\frac{c q_{n-2}}{q_{n}}, 2 a_{n} a-\frac{a q_{n}}{q_{n-1}}-\frac{c q_{n-1}}{q_{n}},-a, n-1\right) \in \Omega_{D}^{\prime}
$$

Thus the 4-tuples we wish to characterize here are of the form

$$
\phi^{k}\left(0,-m, n_{0}, 0\right)
$$

for $k \geq 1$ and $n_{0} \geq 1$. We need only work to determine which choices of k and n_{0} give $\phi^{k}\left(0,-m, n_{0}, 0\right) \in \Omega_{D}^{\prime}$.

In order to do this, we must better understand $\phi^{k}\left(0,-m, n_{0}, 0\right)$, which is computed by iteratively applying k matrices to the polynomial $-m X+n_{0}$. That is, we need only find the coefficients of the polynomial

$$
(-1)^{k}\left(-m X+n_{0}\right)\left|\left(\begin{array}{cc}
0 & 1 \\
1 & a_{1}
\end{array}\right)\right|\left(\begin{array}{cc}
0 & 1 \\
1 & a_{2}
\end{array}\right)|\cdots|\left(\begin{array}{cc}
0 & 1 \\
1 & a_{k}
\end{array}\right) .
$$

Since one can prove inductively that

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & a_{1}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & a_{2}
\end{array}\right) \ldots\left(\begin{array}{cc}
0 & 1 \\
1 & a_{k}
\end{array}\right)=\left(\begin{array}{cc}
p_{k-1} & p_{k} \\
q_{k-1} & q_{k}
\end{array}\right),
$$

we have that $\phi^{k}\left(0,-m, n_{0}, 0\right)$ is found by taking the coefficients of the polynomial

$$
(-1)^{k}\left(-m X+n_{0}\right) \left\lvert\,\left(\begin{array}{cc}
p_{k-1} & p_{k} \\
q_{k-1} & q_{k}
\end{array}\right)=(-1)^{k}\left[q_{k-1}\left(n_{0} q_{k-1}-m p_{k-1}\right) X^{2}+(\cdots) X+q_{k}\left(n_{0} q_{k}-m p_{k}\right)\right]\right.
$$

That is, $\phi^{k}\left(0,-m, n_{0}, 0\right) \in \Omega_{D}^{\prime}$ if and only if

$$
\begin{aligned}
(-1)^{k}\left(n_{0} q_{k-1}-m p_{k-1}\right) & <0 \\
(-1)^{k}\left(n_{0} q_{k}-m p_{k}\right) & >0
\end{aligned}
$$

i.e.,

$$
\frac{(-1)^{k} p_{k}}{q_{k}}<\frac{(-1)^{k} n_{0}}{m}<\frac{(-1)^{k} p_{k-1}}{q_{k-1}} .
$$

Finally, since $p_{k} / q_{k}>x$ when k is odd and $p_{k} / q_{k}<x$ when k is even, and $\psi\left(\phi^{k}\left(0,-m, n_{0}, 0\right) ; X\right)=$ $(-1)^{k+1}\left(m X-n_{0}\right)$, we have that

$$
\sum_{\substack{\left.k \geq 1 \\
0,-m, n_{0}, 0\right) \in \Omega_{D}^{\prime}}} \psi\left(\phi^{k}\left(0,-m, n_{0}, 0\right) ; x\right)=\left\{\begin{array}{ll}
m x-n_{0} & 0<\frac{n_{0}}{m}<x \\
0 & \text { otherwise }
\end{array} .\right.
$$

Then summing over $n_{0} \geq 1$ gives

$$
\begin{aligned}
\sum_{(a, b, c, n) \in \Omega_{D}^{5}} \psi(a, b, c, n ; x) & =\sum_{n_{0} \geq 1} \sum_{\substack{k \geq 1 \\
\phi^{k}\left(0,-m, n_{0}, 0\right) \in \Omega_{D}^{\prime}}} \psi\left(\phi^{k}\left(0,-m, n_{0}, 0\right) ; x\right) \\
& =\sum_{n_{0} \geq 1} \max \left(0, m x-n_{0}\right) \\
& =\frac{\mathbb{B}(m x)-\overline{\mathbb{B}}(m x)}{2},
\end{aligned}
$$

as desired (note that the last equality can be found on page 1162 of [9]).
Finally, in order to establish (c), we follow a computation in Section 10 of [9]. Define

$$
\varepsilon_{n}:=\sum_{a=1}^{m a_{n+1}} \psi(-a, m, 0, n ; x)
$$

By rearranging as in [9], one can prove that $\varepsilon_{n}=\frac{m}{2}\left(m \delta_{n}^{2}-m \delta_{n+2}^{2}-\delta_{n} \delta_{n+1}+\delta_{n+1} \delta_{n+2}\right)$, so it follows as in [9] that

$$
\sum_{\substack{n \geq 0 \\ 1 \leq a \leq m a_{n+1}}} \psi(-a, m, 0 ; x)=\sum_{n=0}^{\infty} \varepsilon_{n}=\frac{1}{2} \mathbb{B}_{2}(m x)-\frac{1}{12}+\frac{m^{2}}{2}-\frac{m}{2} \kappa(x),
$$

as desired.

3. Proofs of Theorem 1.1 and Corollaries 1.2 and 1.3

3.1. Proof of Theorem 1.1. First consider the case where D is not a square. Recall from Section 2.3 that that all of the polynomials of the form $\psi(a, b, c, n ; X)$, where $(a, b, c, n) \in \Omega_{D}^{0}$, are distinct and contained in Ω_{D}, so we need only check that there are no others. In order to do this, we need only show that

$$
\sum_{(a, b, c, n) \in \Omega_{D}^{0}} \psi(a, b, c, n ; x)=A_{D}(x) .
$$

To see this, recall from Section 2.3 that $\sum_{(a, b, c, n) \in \Omega_{D}^{\prime}} \psi(a, b, c, n ; x)=A_{D}(0)$. Thus we have

$$
\begin{aligned}
\sum_{(a, b, c, n) \in \Omega_{D}^{0}} \psi(a, b, c, n ; x) & =\sum_{(a, b, c, n) \in \Omega_{D}^{0}} \psi(a, b, c, n ; x) \\
& +\left\{\sum_{(a, b, c, n) \in \Omega_{D}^{1} \cup \Omega_{D}^{2}}+\sum_{(a, b, c, n) \in \Omega_{D}^{3} \cup \Omega_{D}^{4}}+\sum_{(a, b, c, n) \in \Omega_{D}^{5}}\right\} \psi(a, b, c, n ; x) \\
& =\sum_{(a, b, c, n) \in \Omega_{D}^{\prime}} \psi(a, b, c, n ; x)=A_{D}(0)=A_{D}(x)
\end{aligned}
$$

by Lemma 2.5(c), Lemma 2.6, and Lemma 2.7. This completes the proof of Theorem 1.1 for non-square D.

If $D=m^{2}$, then the proof is similar; here, the computation in Section 2.3 gives that

$$
\sum_{(a, b, c, n) \in \Omega_{D}^{\prime}} \psi(a, b, c, n ; x)=A_{m^{2}}^{*}(0),
$$

so we have

$$
\begin{aligned}
\sum_{(a, b, c, n) \in \Omega_{D}^{0}} & \psi(a, b, c, n ; x)+\sum_{\substack{n \geq 0 \\
1 \leq a \leq m a_{n+1}}} \psi(-a, m, 0, n ; x)-\frac{1}{2} \overline{\mathbb{B}}_{2}(m x)+\frac{m^{2}}{2} \kappa(x) \\
& =\left(\sum_{(a, b, c, n) \in \Omega_{D}^{\prime}}-\sum_{(a, b, c, n) \in \Omega_{D}^{5}}\right) \psi(a, b, c, n ; x)+\left(\frac{1}{2} \mathbb{B}(m x)-\frac{1}{12}+\frac{m^{2}}{2}-\frac{m^{2}}{2} \kappa(x)\right) \\
& -\frac{1}{2} \overline{\mathbb{B}}_{2}(m x)+\frac{m^{2}}{2} \kappa(x) \\
& =\left(A_{m^{2}}^{*}(0)-\frac{\mathbb{B}(m x)-\overline{\mathbb{B}}(m x)}{2}\right)+\frac{1}{2} \mathbb{B}(m x)-\frac{1}{12}+\frac{m^{2}}{2}-\frac{1}{2} \overline{\mathbb{B}}_{2}(m x) \\
& =A_{m^{2}}^{*}(0)-\frac{1}{12}+\frac{m^{2}}{2}=A_{m^{2}}(0)=A_{m^{2}}(x)
\end{aligned}
$$

as desired.
3.2. Proof of Corollary 1.2. By Lemma 2.3, we need only show that $\# \Omega_{D}(x)=+\infty$ if x is quadratic over \mathbb{Q}. Without loss of generality, suppose that $0<x<1$.

It is known [2] that there is at least one binary quadratic form $a X^{2}+b X Y+c Y^{2}$ of discriminant D which is reduced, i.e., (since D is positive)

$$
0<\frac{\sqrt{D}-b}{2|a|}<1<\frac{\sqrt{D}+b}{2|a|}
$$

Note that a and c have opposite signs, since if they have the same sign, we have $D=$ $b^{2}-4 a c<b^{2}$, so $D-b^{2}<0$, and this contradicts the fact that $0<\sqrt{D}-b<\sqrt{D}+b$. Thus we may assume without loss of generality that $a<0<c$ (since either $a X^{2}+b X Y+c Y^{2}$ or $-a X^{2}+b X Y-c Y^{2}$ will satisfy this property).

For these reduced binary quadratic forms, we now claim that the polynomials $\psi(a, b, c, n ; X)$ (for $n \geq 0$) are all distinct and contained in $\Omega_{D}(x)$, i.e., that $(a, b, c, n) \in \Omega_{D}^{0}$. Note that

$$
\psi(a, b, c, n, X)_{2}=a q_{n}^{2}-b q_{n} q_{n-1}+c q_{n-1}^{2}=q_{n-1}^{2}\left[a\left(q_{n} / q_{n-1}\right)^{2}-b\left(q_{n} / q_{n-1}\right)+c\right]<0
$$

since $q_{n} / q_{n-1} \geq 1$, and $a X^{2}-b X+c<0$ for $X \geq 1$ since $\frac{\sqrt{D}-b}{2|a|}<1$. Similarly,

$$
\psi(a, b, c, n, x)=a \delta_{n+1}^{2}+b \delta_{n+1} \delta_{n}+c \delta_{n}^{2}=\delta_{n}^{2}\left[a\left(\delta_{n+1} / \delta_{n}\right)^{2}+b\left(\delta_{n+1} / \delta_{n}\right)+c\right]>0
$$

since $\delta_{n+1} / \delta_{n} \leq 1$ and $1<\frac{\sqrt{D}+b}{2|a|}$. Thus we have that $(a, b, c, n) \in \Omega_{D}^{0} \cup \Omega_{D}^{1}$. If $(a, b, c, n) \in \Omega_{D}^{1}$, then $\psi(a, b, c, n) \in \Omega_{D}^{2}$, and in particular

$$
-a-b a_{n+1}-c a_{n+1}^{2}>0 .
$$

This is a contradiction since $\frac{1}{a_{n+1}} \leq 1<\frac{\sqrt{D}+b}{2|a|}$. Thus $(a, b, c, n) \in \Omega_{D}^{0}$ for all $n \geq 0$ as desired.
3.3. Proof of Corollary 1.3. Suppose that $D=5$ and $0<x<1$. Then recall from Section 1 that

$$
A_{5}(0)=\left\{-X^{2}+X+1,-X^{2}-X+1\right\}
$$

so by Theorem 1.1 we have that

$$
\Omega_{D}(x) \subseteq\{\psi(-1,1,1 ; X): n \geq 0\} \cup\{\psi(-1,-1,1 ; X): n \geq 0\}
$$

Also, since $-X^{2}+X Y+Y^{2}$ is a reduced binary quadratic form, it follows from the proof of Corollary 1.2 that

$$
\{\psi(-1,1,1 ; X): n \geq 0\} \subseteq \Omega_{D}(x)
$$

Since $\psi(-1, \pm 1,1 ; x)=-\delta_{n+1}^{2} \pm \delta_{n} \delta_{n+1}+\delta_{n}^{2}$, this proves the first statement of Corollary 1.3.
Furthermore, suppose that n is chosen such that $a_{n} \neq 1$ and $a_{n+1} \neq 1$. One can show that $(-1,-1,1, n) \in \Omega_{D}^{0}$ as in the proof of Corollary 1.2 , so $-\delta_{n+1}^{2}-\delta_{n} \delta_{n+1}+\delta_{n}^{2}$ appears as a summand as desired.

4. Examples

Here we consider discriminant $D=5$, and various choices of x. Recall that

$$
\Omega_{5}(0)=\left\{-X^{2} \pm X+1\right\} .
$$

If we first consider $x=\frac{\sqrt{5}-1}{2}=[0 ; 1,1, \ldots]$, one can compute that the polynomials $\psi(-1,-1,1, n ; X)$ are given by

$$
\begin{aligned}
& \psi(-1,-1,1,0 ; X)=-X^{2}+X+1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,-1,1,1 ; X)=-X^{2}+3 X-1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,-1,1,2 ; X)=-5 X^{2}+5 X-1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,-1,1,3 ; X)=-11 X^{2}+15 X-5 \in \Omega_{5}((\sqrt{5}-1) / 2)
\end{aligned}
$$

and one has that $-\delta_{n+1}^{2}+\delta_{n} \delta_{n+1}+\delta_{n}^{2}=\psi(-1,-1,1, n ; x)$ appears in (1.1) for all n (as guaranteed by the proof of Corollary 1.3). The $\psi(-1,1,1, n ; X)$ are given by

$$
\begin{aligned}
& \psi(-1,1,1,0 ; X)=-X^{2}-X+1 \notin \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,1,1,1 ; X)=X^{2}+X-1 \notin \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,1,1,2 ; X)=-X^{2}-X+1 \notin \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,1,1,3 ; X)=X^{2}+X-1 \notin \Omega_{5}((\sqrt{5}-1) / 2)
\end{aligned}
$$

and one can verify that none of the terms appearing in (1.1) are of the form $\psi(-1,1,1, n ; x)=$ $-\delta_{n+1}^{2}-\delta_{n} \delta_{n+1}+\delta_{n}^{2}$.

On the other hand, for $x=\sqrt{2}-1=[0 ; 2,2, \ldots]$, we have

$$
\begin{aligned}
& \psi(-1,-1,1,0 ; X)=-X^{2}+X+1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,-1,1,1 ; X)=-5 X^{2}+5 X-1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,-1,1,2 ; X)=-31 X^{2}+25 X-5 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,-1,1,3 ; X)=-179 X^{2}+149 X-31 \in \Omega_{5}((\sqrt{5}-1) / 2)
\end{aligned}
$$

and

$$
\begin{aligned}
& \psi(-1,1,1,0 ; X)=-X^{2}-X+1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,1,1,1 ; X)=-X^{2}+3 X-1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,1,1,2 ; X)=-11 X^{2}+7 X-1 \in \Omega_{5}((\sqrt{5}-1) / 2) \\
& \psi(-1,1,1,3 ; X)=-59 X^{2}+51 X-11 \in \Omega_{5}((\sqrt{5}-1) / 2)
\end{aligned}
$$

$$
\vdots
$$

and one can show that all of the values $-\delta_{n+1}^{2} \pm \delta_{n} \delta_{n+1}+\delta_{n}^{2}$ appear.
As Zagier described in [9], if $x=\frac{1}{\pi}$ then some of these values appear as summands, while others do not.

5. Proof of Theorem 1.4 and Corollary 1.5

First let us define the weight $\frac{5}{2}$ Cohen-Eisenstein series. For nonnegative integers N, we define $H(2, N)$ as follows: if $N=0$, then set $H(2,0):=\zeta(-3)$, and if $N \equiv 2,3(\bmod 4)$, then set $H(2, N):=0$. For a positive integer N with $D n^{2}=N^{2}$, where D is a fundamental discriminant, set

$$
\begin{equation*}
H(2, N):=L\left(-1, \chi_{D}\right) \sum_{d \mid n} \mu(d) \chi_{D}(d) d \sigma_{3}(n / d) \tag{5.1}
\end{equation*}
$$

Now define the Cohen-Eisenstein series by

$$
H_{2}(z):=\sum_{N=0}^{\infty} H(2, N) q^{N}=\frac{1}{120}-\frac{1}{12} q-\frac{7}{12} q^{4}-\frac{2}{5} q^{5}-q^{8}-\frac{25}{12} q^{9}-\cdots
$$

Cohen [1] proved that $H_{2}(z) \in M_{5 / 2}\left(\Gamma_{0}(4)\right)$, and we have that

$$
H_{2}(z)=\frac{1}{120}\left(\theta(z)^{5}-20 \theta(z) F(z)\right)
$$

where $\theta(z):=\sum_{n=-\infty}^{\infty} q^{n^{2}} \in M_{1 / 2}\left(\Gamma_{0}(4)\right)$ and $F(z):=\sum_{n=0}^{\infty} \sigma_{1}(2 n+1) q^{2 n+1} \in M_{2}\left(\Gamma_{0}(4)\right)$.
Now if D is a positive fundamental discriminant, note that

$$
-5 H(2, D)=-5 L\left(-1, \chi_{D}\right)=A_{D}(x)
$$

by Lemma 2.2. In fact, more is true; Zagier [9] showed that

$$
-5 H(2, D)=A_{D}(x)=\alpha_{D}
$$

for all nonnegative integers D which are congruent to 0 or 1 modulo 4 . Thus we must study

$$
-5 H_{2}(z)=-\frac{1}{24}+\frac{5}{12} q+\frac{35}{12} q^{4}+2 q^{5}+5 q^{8}+\frac{125}{12} q^{9}+\cdots=\sum_{n \geq 0} \alpha_{n} q^{n}
$$

We first note that $-5 H_{2}(z)$ behaves well under the Hecke operator $T_{p^{2}}$. For $f(z)=\sum_{n \geq 0} a(n) q^{n} \in$ $M_{5 / 2}\left(\Gamma_{0}(4)\right)$ and a prime $p>2$, the Hecke operator is defined by

$$
f(z) \left\lvert\, T_{p^{2}}=\sum_{n \geq 0}\left[a\left(p^{2} n\right)+p\left(\frac{n}{p}\right) a(n)+p^{3} a\left(n / p^{2}\right)\right] q^{n}\right.,
$$

and it is known that $f(z) \mid T_{p^{2}} \in M_{5 / 2}\left(\Gamma_{0}(4)\right)$. First we show that $-5 H_{2}(z)$ is an eigenfunction of the Hecke operator $T_{p^{2}}$ with eigenvalue $1+p^{3}$.

Lemma 5.1. Let $p>2$ be prime. Then we have that

$$
-5 H_{2}(z) \mid T_{p^{2}}=-5\left(1+p^{3}\right) H_{2}(z)
$$

Proof. First note that $\operatorname{dim}_{\mathbb{C}} M_{5 / 2}\left(\Gamma_{0}(4)\right)=2$, so we need only check that

$$
-5 H_{2}(z) \left\lvert\, T_{p^{2}}=\frac{-\left(1+p^{3}\right)}{24}+\frac{5\left(1+p^{3}\right)}{12} q+\cdots .\right.
$$

To see this, note that

$$
-5 H_{2}(z) \left\lvert\, T_{p^{2}}=\sum_{n \geq 0}\left[a_{p^{2} n}+p\left(\frac{n}{p}\right) \alpha_{n}+p^{3} \alpha_{n / p^{2}}\right] q^{n}\right.
$$

so when $n=0$ we have

$$
\alpha_{0}+0+p^{3} \alpha_{0}=\left(1+p^{3}\right) \alpha_{0}=\frac{-\left(1+p^{3}\right)}{24}
$$

and when $n=1$ we have

$$
\begin{aligned}
\alpha_{p^{2}}+p \alpha_{1}+0 & =-5 H\left(2, p^{2}\right)+\frac{5}{12} p=-5 \zeta(-1) \sum_{d \mid p} \mu(d) d \sigma_{3}(p / d)+\frac{5}{12} p \\
& =\frac{5}{12}\left(\sigma_{3}(p)-p \sigma_{3}(1)\right)+\frac{5}{12} p=\frac{5\left(1+p^{3}\right)}{12}
\end{aligned}
$$

as desired.
Before we prove Theorem 1.4, let us first define

$$
\begin{aligned}
& -5 H_{2}(z) \mid U_{p}:=\sum_{n \geq 0} u_{p}(n) q^{n} \\
& -5 H_{2}(z) \mid V_{p}:=\sum_{n \geq 0} v_{p}(n) q^{n}
\end{aligned}
$$

where

$$
\begin{aligned}
& u_{p}(n):=\alpha_{p n} \\
& v_{p}(n):= \begin{cases}\alpha_{n / p} & \text { if } p \mid n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

It is known that $-5 H_{2}(z)\left|U_{p},-5 H_{2}(z)\right| V_{p} \in M_{5 / 2}\left(\Gamma_{0}(4 p),\left(\frac{4 p}{.}\right)\right)$ [7].
We also recall a useful theorem of Sturm [8], which states that if $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in$ $M_{k}\left(\Gamma_{0}(N), \chi\right)$ is a modular form with integral coefficients, and $a(n) \equiv 0(\bmod \ell)$ for all

$$
n \leq \frac{k}{12}\left[\Gamma_{0}(1): \Gamma_{0}(N)\right]
$$

then $f(z) \equiv 0(\bmod \ell)$.
Proof of Theorem 1.4. First note that since $p \equiv-1(\bmod \ell)$, Lemma 5.1 implies that

$$
\alpha_{p^{2} n} \equiv\left(\frac{n}{p}\right) \alpha_{n}+\alpha_{n / p^{2}} \quad(\bmod \ell)
$$

for all $n \geq 0$.
Note also that $u_{p}(0)=v_{p}(0)$, and

$$
u_{p}(p)=\alpha_{p^{2}} \equiv \alpha_{1}=v_{p}(p) \quad(\bmod \ell)
$$

but $-5 H_{2}(z) \mid U_{p} \not \equiv-5 H_{2}(z) V_{p}(\bmod \ell)$. To see this, note that since $p \equiv 2,3(\bmod 5)$, we have

$$
\begin{aligned}
& v_{p}\left(5 p^{3}\right)=\alpha_{5 p^{2}} \equiv\left(\frac{5}{p}\right) \alpha_{5}=-2 \quad(\bmod \ell) \\
& u_{p}\left(5 p^{3}\right)=\alpha_{5 p^{4}} \equiv \alpha_{5}=2 \quad(\bmod \ell)
\end{aligned}
$$

so $v_{p}\left(5 p^{3}\right) \not \equiv u_{p}\left(5 p^{3}\right)(\bmod \ell)$.
Since the Sturm bound for $-5 H_{2}(z)\left|U_{p}+5 H_{2}(z)\right| V_{p} \in M_{5 / 2}\left(\Gamma_{0}(4 p),\left(\frac{4 p}{.}\right)\right)$ is

$$
\frac{5 / 2}{12}\left[\Gamma_{0}(1): \Gamma_{0}(4 p)\right]=\frac{5}{24} \cdot 4 p \cdot \frac{3}{2} \cdot \frac{p+1}{p}=\frac{5}{4}(p+1)<2 p
$$

it follows that there exists some number $1 \leq n_{p} \leq \frac{5}{4}(p+1), n_{0} \neq p$ such that

$$
u_{p}\left(n_{p}\right) \not \equiv v_{p}\left(n_{p}\right)=0 \quad(\bmod \ell)
$$

This completes the proof since $A_{p n_{p}}(x)=u_{p}\left(n_{p}\right)$.
Proof of Corollary 1.5. Let p_{1}, p_{2}, \ldots denote the primes (in increasing order) which satisfy the congruence conditions for p in Theorem 1.4. If $i<j<k$ and $p_{i} n_{p_{i}}=p_{j} n_{p_{j}}=p_{k} n_{p_{k}}=: D$ in the notation of Theorem 1.4, it follows that $p_{i} p_{j} p_{k} \mid D$, so

$$
p_{i} p_{j} p_{k} \leq \frac{5}{4} p_{i} p_{i+1},
$$

which is a contradiction. Thus at least half of the primes p_{1}, p_{2}, \ldots result in distinct values $n_{p} p$ as described in Theorem 1.4.

The result then follows by Dirichlet's Theorem on primes in arithmetic progressions, since the primes p_{1}, p_{2}, \ldots constitute two arithmetic progressions modulo 5ℓ, and for each such p we have

$$
n_{p} p \leq \frac{5}{4} p(p+1) .
$$

Note that Corollary 1.5 only gives a lower bound for the number of nonzero coefficents of $-5 H_{2}(z)$ modulo ℓ, which is not expected to be sharp (and does not even prove that a nonzero proportion of the coefficients are nonzero modulo ℓ). Naively, one might expect the proportion of nonzero coefficients $\bmod \ell$ to be $\frac{\ell-1}{2 \ell}$, since half of the coefficients are 0 , and we might guess that the other half are distributed evenly among the congruence classes mod ℓ. We give these expected proportions for the primes $\ell=5,7,13$ in the table below.

ℓ	7	11	13
$\frac{\ell-1}{2 \ell}$	0.4286	0.4545	0.4615

This guess, however, seems to be a bit higher than numerics suggest. To see this, we chose various primes $\ell>5$ and computed the proportion

$$
\delta(\ell, X):=\frac{\#\left\{0<D \equiv 0,1 \quad(\bmod 4) \leq X: \ell \nmid A_{D}(x)\right\}}{X}
$$

for various large X. The following table lists the results.

X	$\delta(7, X)$	$\delta(11, X)$	$\delta(13, X)$
10^{2}	0.42	0.43	0.49
10^{3}	0.382	0.421	0.462
10^{4}	0.3767	0.4118	0.4485
10^{5}	0.37427	0.40910	0.44696

This table suggests that the values of the coefficients are not evenly distributed among the congruence classes modulo ℓ. Presumably, these numbers follow a distribution analogous to the Cohen-Lenstra distribution which is predicted for class numbers of imaginary quadratic fields.

References

[1] Henri Cohen. Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann., 217(3):271-285, 1975.
[2] Henri Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.
[3] Kevin James and Ken Ono. Selmer groups of quadratic twists of elliptic curves. Math. Ann., 314(1):1-17, 1999.
[4] A. Ya. Khintchine. Continued fractions. Translated by Peter Wynn. P. Noordhoff Ltd., Groningen, 1963.
[5] Winfried Kohnen and Ken Ono. Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication. Invent. Math., 135(2):387-398, 1999.
[6] Ken Ono. The web of modularity: arithmetic of the coefficients of modular forms and q-series, volume 102 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004.
[7] Goro Shimura. On modular forms of half integral weight. Ann. of Math. (2), 97:440-481, 1973.
[8] Jacob Sturm. On the congruence of modular forms. In Number theory (New York, 1984-1985), volume 1240 of Lecture Notes in Math., pages 275-280. Springer, Berlin, 1987.
[9] D. Zagier. From quadratic functions to modular functions. In Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), pages 1147-1178. de Gruyter, Berlin, 1999.

Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322

E-mail address: mjames7@emory.edu

