CONGRUENCES FOR BROKEN k-DIAMOND PARTITIONS
MARIE JAMESON

ABSTRACT. We prove two conjectures of Paule and Radu from their recent paper on broken
k-diamond partitions.

1. INTRODUCTION AND STATEMENT OF RESULTS

In [1], Paule and Andrews constructed a class of directed graphs called broken k-diamonds,
and defined Ag(n) to be the number of broken k-diamond partitions of n. They noted that
the generating function for A(n) is essentially a modular form. More precisely, if k& > 1,
then

k+1)/1277<22) ((2k +1)z)
(1) ZA’“ - (P4 1 2)2)”

where ¢ := €™ and 7(z) is Dedekind’s eta function

9= Ta
n=1

One can show various congruences for Ag(n) for n in certain arithmetic progressions. For
example, Xiong [4] proved congruences for Az(n) and As(n) which had been conjectured by
Paule and Radu in [3]. In particular, he showed that

(1.2) [[a-¢)*(1 =) =6> As(Tn+5)¢" (mod 7)

In this note, we prove the remaining two conjectures in [3]. First, we use (1.2) to prove
the following statement (which is denoted Conjecture 3.2 in [3]).

Theorem 1.1. For all n € N, we have that
As(Tn +82) = As(T°n + 229) = A3(7°n 4 278) = A3(7°n +327) =0 (mod 7).

Now, recall that the weight k& Eisenstein series (where k > 4 is even) are given by

where By, is the kth Bernoulli number, and oj_1(n) :=>_,, d*1. Also define
(1.3) Zc(n = E,(22) H (1 —¢"B(1 = ¢®)? = ¢ V2E4(22)n(2)%n(22)2
n=0 n=1
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The coefficients ¢(n) are of interest here because they are related to broken k-diamond
partitions in the following way (as conjectured in [3] and proved in [4]):

(1.4) c(n) =8A5(11ln+6) (mod 11).

Here we prove the last remaining conjecture of Paule and Radu (which is Conjecture 3.4 of
[3]). More precisely, we have the following theorem.

Theorem 1.2. For every prime p =1 (mod 4), there ezists an integer y(p) such that

e R e SRR

2 p
for all n € N.

Remark 1. Theorem 1.2 follows from a more technical result (see Theorem 3.1 which is
proved in Section 3).

Remark 2. As noted in [3], one can combine (1.4) with Theorem 1.2 to see that for every
prime p =1 (mod 4) and n € N we have

_1 1n+6 p—1
A5((11n—|—6)p—pT)+p8A5( n +p2p

To prove Theorems 1.1 and 1.2, we make use of the theory of modular forms. In particular,
we shall make use of the U-operator, Hecke operators, the theory of twists, and a theorem of
Sturm. These results are described in [2]. We shall freely assume standard definitions and
notation which may be found there.

) = y(p)As(11n+6) (mod 11).

2. PROOF OF THEOREM 1.1

First we consider the form 7(32)*n(62)°. By Theorems 1.64 and 1.65 in [2], we have that
n(32)*n(62)° € S5 (I'o(72), (<)) . Note from (1.2) that

n(32)*'n(62)° = 6 Z As(Tn +5)¢***  (mod 7).

n=0

It follows that

f(2) :=n(32)"n(62)° | U; =6 Z As(7*n +33)¢*"*?  (mod 7).
n=0
Here, U, denotes Atkin’s U-operator, which is defined by

o o

> a(n)g" |Us=>_a(dn)q"

n=0 n=0
for d a positive integer. By the theory of the U-operator (see Proposition 2.22 and Remark
2.23 in [2]), it follows that f(z) € S5 (T'9(504), (1)) . Now if we define b(n) by

> b(n)g" = f(2),

then our goal is to show that
b(2ln+5) =b(21n + 14) = b(2ln+ 17) =b(21n +20) =0 (mod 7).
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In order to prove the desired congruence, consider the Dirichlet character ¢ defined by
(o) = (;) We may consider the 1-twist of f, which is given by

fo(2) =Y (mb(n)g".

By Proposition 2.8 of [2], we have that fy(z) € S5 (I'9(24696), (<)) -
Then consider

F(2) = folz) = i (1 . (g)) b(n)q" € Ss (F0(24696), (?)) .

n=0

In fact, f(z) — fy(2) =0 (mod 7). This follows from a theorem of Sturm (see Theorem 2.58
in [2]), which states that f(z) — fy(2) =0 (mod 7) if its first 23520 coefficients are 0 (mod
7) (which was verified using Maple). Thus we have that

(1 - (g)) b(n) =0 (mod 7)
for all n, and thus

b(2In +5) =b(2In+ 14) = b(21n + 17) = b(2In+20) =0 (mod 7)
for all n € N, as desired.

3. PROOF OF THEOREM 1.2

3.1. Preliminaries. Let us first recall the Hecke operators and their properties. If f(z) =
Yo pa(n)g" € My(To(N), x) and p is prime, the Hecke operator T), ., (or simply T, if the
weight and character are known from context) is defined by

o0

F) 1T, =Y (alpn) + x(p)p* " a(n/p)) ¢",

n=0

where we set a(n/p) = 0 if p t n. It is important to note that f(2) | T, € Mg(I'o(N), x)-
In order to prove the final statement of Theorem 1.2, define

9(z) = gc«nw = Bi(42)n(22)"n(42)" € Sy (FO“‘”’ (__4))

and note that ¢(n) = ¢y(2n + 1). Thus we wish to show that for every prime p =1 (mod 4)
there exists an integer y(p) such that

2n+1

o (p(2n + 1)) + pco ( ) — y(p)eo(2n + 1)

for all n € N. By summing (and noting that ¢q(n) = 0 when n is even) we see that this is
equivalent to the statement that

9(2) | T, = y(p)g(2).

That is, we need only show that g(z) is an eigenform of the Hecke operator T}, for all p = 1
(mod 4).
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To see this, we let F' be the weight 2 Eisenstein series (see (1.18) of [2]) given by

F(z):= % = ;al(m +1)g>" ! € My(Ty(4)),

let 0y(z) be the theta-function given by

0o(z) := Z q"" € Mio(To(4)),

n=—0oo

and let h(z) be the normalized cusp form

h(z) = n(42)0 = nf:la(n)q" =64 +9¢" +--- €Sy (ro(m), (}4» |

Then h(z) is a modular form with complex multiplication, and for primes p we have (see
Section 1.2.2 of [2])

) 222 — 2y?> p=2a?+y? with 2,y € Z and x odd
a =
b 0 p=2,3 (mod 4).

Then we may define fi, f2, f € Sy (F'o(16), (=2)) by

fi(z) = Z di(n)q" = Ey(42)F(2) [465(42) — 65(22) + 465 (22)05(4z) — 660;(22)0;(42)]
fa(2) =) da(n)q" := Ey(42)F(22)h(2)

F(2) =Y dn)q" = fi(2) + 8iv3fa(2).

We prove the following theorem involving these forms.

Theorem 3.1. The forms f(z) and f(z) are eigenforms of the Hecke operator T, for all
primes p. Furthermore we have that

Ty = (f, ?)7

where Ty is the subspace of Sy (Fo(lﬁ), (%4)) spanned by g together with g | T, for all primes
p.

Proof. First note that f and f are eigenforms of the Hecke operator T, for all primes p.
To see this, note that there is a basis of Hecke eigenforms of the space Sy (F0(16), (_74))
Also, both f and f are eigenforms of T5 with eigenvalue 258, and one can compute that this
eigenspace

ker (75 — 258)

is 2-dimensional (this can be done, for example, by computing the characteristic polynomial

of Ty using Sage). Finally, both f and f are eigenforms of the Hecke operator T%, and they
have different eigenvalues.
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Now, note that

(e o)
I=\2 21/3 2 23
and thus T, is a two-dimensional subspace of (f, f). Thus T, = (f, f), as desired. O

3.2. Proof of Theorem 1.2. Suppose p is a prime with p =1 (mod 4). Then we need only
check that f and f are eigenforms of T, » with the same eigenvalue. Since these eigenvalues
are the coefficients of ¢” in the expansions of f and f (see Proposition 2.6 of [2]), we need
only show that

d(p) = d(p),
ie., d(p) € R.

Now, note that the coefficients of F,;(4z) are only supported on indices that are congruent
to 0 mod 4 by construction. Also, the coefficients of F'(2z) are supported on indices which
are 2 (mod 4), and the coefficients of h(z) are supported on indices which are 1 (mod 4).
Thus the coefficients of fy are only supported on indices that are congruent to 3 mod 4, so
we have that dy(p) = 0, and thus d(p) = d;(p) € R, as desired.
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