
CONGRUENCES FOR BROKEN k-DIAMOND PARTITIONS

MARIE JAMESON

Abstract. We prove two conjectures of Paule and Radu from their recent paper on broken
k-diamond partitions.

1. Introduction and Statement of Results

In [1], Paule and Andrews constructed a class of directed graphs called broken k-diamonds,
and defined ∆k(n) to be the number of broken k-diamond partitions of n. They noted that
the generating function for ∆k(n) is essentially a modular form. More precisely, if k ≥ 1,
then

(1.1)
∞∑
n=0

∆k(n)qn = q(k+1)/12η(2z)η((2k + 1)z)

η(z)3η((4k + 2)z)
,

where q := e2πiz and η(z) is Dedekind’s eta function

η(z) = q1/24
∞∏
n=1

(1− qn) .

One can show various congruences for ∆k(n) for n in certain arithmetic progressions. For
example, Xiong [4] proved congruences for ∆3(n) and ∆5(n) which had been conjectured by
Paule and Radu in [3]. In particular, he showed that

(1.2)
∞∏
n=1

(1− qn)4(1− q2n)6 ≡ 6
∞∑
n=0

∆3(7n+ 5)qn (mod 7)

In this note, we prove the remaining two conjectures in [3]. First, we use (1.2) to prove
the following statement (which is denoted Conjecture 3.2 in [3]).

Theorem 1.1. For all n ∈ N, we have that

∆3(7
3n+ 82) ≡ ∆3(7

3n+ 229) ≡ ∆3(7
3n+ 278) ≡ ∆3(7

3n+ 327) ≡ 0 (mod 7).

Now, recall that the weight k Eisenstein series (where k ≥ 4 is even) are given by

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Bk is the kth Bernoulli number, and σk−1(n) :=
∑

d|n d
k−1. Also define

(1.3)
∞∑
n=0

c(n)qn := E4(2z)
∞∏
n=1

(1− qn)8(1− q2n)2 = q−1/2E4(2z)η(z)8η(2z)2.
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The coefficients c(n) are of interest here because they are related to broken k-diamond
partitions in the following way (as conjectured in [3] and proved in [4]):

(1.4) c(n) ≡ 8∆5(11n+ 6) (mod 11).

Here we prove the last remaining conjecture of Paule and Radu (which is Conjecture 3.4 of
[3]). More precisely, we have the following theorem.

Theorem 1.2. For every prime p ≡ 1 (mod 4), there exists an integer y(p) such that

c

(
pn+

p− 1

2

)
+ p8c

(
n− (p− 1)/2

p

)
= y(p)c(n)

for all n ∈ N.

Remark 1. Theorem 1.2 follows from a more technical result (see Theorem 3.1 which is
proved in Section 3).

Remark 2. As noted in [3], one can combine (1.4) with Theorem 1.2 to see that for every
prime p ≡ 1 (mod 4) and n ∈ N we have

∆5

(
(11n+ 6)p− p− 1

2

)
+ p8∆5

(
11n+ 6

p
+
p− 1

2p

)
≡ y(p)∆5(11n+ 6) (mod 11).

To prove Theorems 1.1 and 1.2, we make use of the theory of modular forms. In particular,
we shall make use of the U -operator, Hecke operators, the theory of twists, and a theorem of
Sturm. These results are described in [2]. We shall freely assume standard definitions and
notation which may be found there.

2. Proof of Theorem 1.1

First we consider the form η(3z)4η(6z)6. By Theorems 1.64 and 1.65 in [2], we have that
η(3z)4η(6z)6 ∈ S5

(
Γ0(72),

(−1
•

))
. Note from (1.2) that

η(3z)4η(6z)6 ≡ 6
∞∑
n=0

∆3(7n+ 5)q3n+2 (mod 7).

It follows that

f(z) := η(3z)4η(6z)6 | U7 ≡ 6
∞∑
n=0

∆3(7
2n+ 33)q3n+2 (mod 7).

Here, Ud denotes Atkin’s U -operator, which is defined by
∞∑
n=0

a(n)qn | Ud =
∞∑
n=0

a(dn)qn

for d a positive integer. By the theory of the U -operator (see Proposition 2.22 and Remark
2.23 in [2]), it follows that f(z) ∈ S5

(
Γ0(504),

(−1
•

))
. Now if we define b(n) by

∞∑
n=0

b(n)qn := f(z),

then our goal is to show that

b(21n+ 5) ≡ b(21n+ 14) ≡ b(21n+ 17) ≡ b(21n+ 20) ≡ 0 (mod 7).
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In order to prove the desired congruence, consider the Dirichlet character ψ defined by
ψ(•) :=

(•
7

)
. We may consider the ψ-twist of f , which is given by

fψ(z) :=
∞∑
n=0

ψ(n)b(n)qn.

By Proposition 2.8 of [2], we have that fψ(z) ∈ S5

(
Γ0(24696),

(−1
•

))
.

Then consider

f(z)− fψ(z) =
∞∑
n=0

(
1−

(
n

7

))
b(n)qn ∈ S5

(
Γ0(24696),

(
−1

•

))
.

In fact, f(z)− fψ(z) ≡ 0 (mod 7). This follows from a theorem of Sturm (see Theorem 2.58
in [2]), which states that f(z)− fψ(z) ≡ 0 (mod 7) if its first 23520 coefficients are 0 (mod
7) (which was verified using Maple). Thus we have that(

1−
(
n

7

))
b(n) ≡ 0 (mod 7)

for all n, and thus

b(21n+ 5) ≡ b(21n+ 14) ≡ b(21n+ 17) ≡ b(21n+ 20) ≡ 0 (mod 7)

for all n ∈ N, as desired.

3. Proof of Theorem 1.2

3.1. Preliminaries. Let us first recall the Hecke operators and their properties. If f(z) =∑∞
n=0 a(n)qn ∈ Mk(Γ0(N), χ) and p is prime, the Hecke operator Tp,k,χ (or simply Tp if the

weight and character are known from context) is defined by

f(z) | Tp :=
∞∑
n=0

(
a(pn) + χ(p)pk−1a(n/p)

)
qn,

where we set a(n/p) = 0 if p - n. It is important to note that f(z) | Tp ∈Mk(Γ0(N), χ).
In order to prove the final statement of Theorem 1.2, define

g(z) =
∞∑
n=0

c0(n)qn := E4(4z)η(2z)8η(4z)2 ∈ S9

(
Γ0(16),

(
−4

•

))
and note that c(n) = c0(2n+ 1). Thus we wish to show that for every prime p ≡ 1 (mod 4)
there exists an integer y(p) such that

c0 (p(2n+ 1)) + p8c0

(
2n+ 1

p

)
= y(p)c0(2n+ 1)

for all n ∈ N. By summing (and noting that c0(n) = 0 when n is even) we see that this is
equivalent to the statement that

g(z) | Tp = y(p)g(z).

That is, we need only show that g(z) is an eigenform of the Hecke operator Tp for all p ≡ 1
(mod 4).
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To see this, we let F be the weight 2 Eisenstein series (see (1.18) of [2]) given by

F (z) :=
η(4z)8

η(2z)4
=
∞∑
n=0

σ1(2n+ 1)q2n+1 ∈M2(Γ0(4)),

let θ0(z) be the theta-function given by

θ0(z) :=
∞∑

n=−∞

qn
2 ∈M1/2(Γ0(4)),

and let h(z) be the normalized cusp form

h(z) := η(4z)6 =
∞∑
n=1

a(n)qn = q − 6q5 + 9q9 + · · · ∈ S3

(
Γ0(16),

(
−4

•

))
.

Then h(z) is a modular form with complex multiplication, and for primes p we have (see
Section 1.2.2 of [2])

a(p) =

{
2x2 − 2y2 p = x2 + y2 with x, y ∈ Z and x odd

0 p ≡ 2, 3 (mod 4).

Then we may define f1, f2, f ∈ S9

(
Γ0(16),

(−4
•

))
by

f1(z) =
∞∑
n=0

d1(n)qn := E4(4z)F (z)
[
4θ60(4z)− θ60(2z) + 4θ40(2z)θ20(4z)− 6θ20(2z)θ40(4z)

]
f2(z) =

∞∑
n=0

d2(n)qn := E4(4z)F (2z)h(z)

f(z) =
∞∑
n=0

d(n)qn := f1(z) + 8i
√

3f2(z).

We prove the following theorem involving these forms.

Theorem 3.1. The forms f(z) and f(z) are eigenforms of the Hecke operator Tp for all
primes p. Furthermore we have that

Tg = 〈f, f〉,

where Tg is the subspace of S9

(
Γ0(16),

(−4
•

))
spanned by g together with g | Tp for all primes

p.

Proof. First note that f and f are eigenforms of the Hecke operator Tp for all primes p.
To see this, note that there is a basis of Hecke eigenforms of the space S9

(
Γ0(16),

(−4
•

))
.

Also, both f and f are eigenforms of T5 with eigenvalue 258, and one can compute that this
eigenspace

ker (T5 − 258)

is 2-dimensional (this can be done, for example, by computing the characteristic polynomial
of T5 using Sage). Finally, both f and f are eigenforms of the Hecke operator T7, and they
have different eigenvalues.
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Now, note that

g =

(
1

2
+

i

2
√

3

)
f +

(
1

2
− i

2
√

3

)
f

and thus Tg is a two-dimensional subspace of 〈f, f〉. Thus Tg = 〈f, f〉, as desired. �

3.2. Proof of Theorem 1.2. Suppose p is a prime with p ≡ 1 (mod 4). Then we need only
check that f and f are eigenforms of Tp with the same eigenvalue. Since these eigenvalues

are the coefficients of qp in the expansions of f and f (see Proposition 2.6 of [2]), we need
only show that

d(p) = d(p),

i.e., d(p) ∈ R.
Now, note that the coefficients of E4(4z) are only supported on indices that are congruent

to 0 mod 4 by construction. Also, the coefficients of F (2z) are supported on indices which
are 2 (mod 4), and the coefficients of h(z) are supported on indices which are 1 (mod 4).
Thus the coefficients of f2 are only supported on indices that are congruent to 3 mod 4, so
we have that d2(p) = 0, and thus d(p) = d1(p) ∈ R, as desired.
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