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Abstract. Ramanujan’s famous congruences for the partition function modulo powers of
5, 7, and 11 have inspired much further research. For example, in 2002 Lovejoy and Ono
found subprogressions of 5jn + β5(j) for which Ramanujan’s congruence mod 5j could be
strengthened to a statement modulo 5j+1. Here we provide the analogous results modulo
powers of 7 and 11. We require the arithmetic properties of two special elliptic curves.

1. Introduction and Statement of Results

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. Let p(n) denote the number of partitions of n (where by convention we set
p(0) = 1). The famous Ramanujan congruences for p(n) modulo powers of 5, 7, and 11
assert that

p(5jn+ β5(j)) ≡ 0 (mod 5j),

p(7jn+ β7(j)) ≡ 0 (mod 7bj/2c+1),

p(11jn+ β11(j)) ≡ 0 (mod 11j)

for all non-negative integers n, where βm(j) := 1/24 (mod mj). They were proved by Ra-
manujan [2], Watson [11], and Atkin [1].

One of the natural questions stemming from the Ramanujan congruences is whether these
results are optimal. In this direction, Lovejoy and Ono [4] defined rational numbers β5(j, `)
by

β5(j, `) =

{
19·5j ·`2+1

24
if j is odd,

23·5j ·`2+1
24

if j is even,

and proved that for a prime ` ≥ 7, and a non-negative integer n, we have that

p(5j`2n+ β5(j, `)) ≡
(

15

`

)(
1 + `− `2

(
−24n− 19

`

))
p(5jn+ β5(j))

− `p
(

5jn

`2
+ β5(j, `

−1)

)
(mod 5j+1)

1
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if j ≥ 1 is odd, and

p(5j`2n+ β5(j, `)) ≡
(

15

`

)(
1 + `−

(
−24n− 23

`

))
p(5jn+ β5(j))

− `p
(

5jn

`2
+ β5(j, `

−1)

)
(mod 5j+1)

if j ≥ 2 is even. This gives subprogressions of 5jn+β5(j) for which Ramanujan’s congruence
mod 5j could be strengthened to a statement modulo 5j+1 which was unknown to Ramanujan.
To do this, Lovejoy and Ono exploited connections between the generating function for the
numbers p(5jn + β5(j)) and certain half integer weight Hecke eigenforms. In this context,
their result is equivalent to determining the eigenvalues of the half integer weight Hecke
operator T (`2) (mod 5).

In the case of the Ramanujan congruences modulo powers of 7 and 11, the eigenvalues
of the corresponding half integer weight Hecke eigenforms are harder to determine modulo
7 and 11. However, these eigenvalues can be described modulo 7 and 11 using the elliptic
curves

E7 : y2 + xy + y = x3 + x2 − 4x+ 5

and

E11 : y2 + xy + y = x3 − 14x+ 20.

If ` is prime, then we let #E7(F`) (resp. #E11(F`)) denote the number of points on E7 (resp.
E11) over F`, including the point at infinity.

This leads to the following analogous results modulo powers of 7 and 11. Let

(1.1) β7(j, `) =

{
17·7j ·`2+1

24
if j is odd,

23·7j ·`2+1
24

if j is even,
and β11(j, `) =

{
13·11j ·`2+1

24
if j is odd,

23·11j ·`2+1
24

if j is even.

Theorem 1.1. Let ` ≥ 5 be prime.

(1) If j ≥ 1 is odd, then for every non-negative integer n we have

p(7j`2n+ β7(j, `)) ≡ `

(
3

`

)(
1 + `−#E7(F`)−

(
24n+ 17

`

))
p(7jn+ β7(j))

− `3p
(

7jn

`2
+ β7(j, `

−1)

)
(mod 7bj/2c+2).

If j ≥ 2 is even, then for every non-negative integer n we have

p(7j`2n+ β7(j, `)) ≡ `

(
3

`

)(
1 + `−#E7(F`)− `3

(
−24n− 23

`

))
p(7jn+ β7(j))

− `3p
(

7jn

`2
+ β7(j, `

−1)

)
(mod 7bj/2c+2).

(2) If j ≥ 1 is odd, then for every non-negative integer n we have
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p(11j`2n+ β11(j, `)) ≡ `3
(

3

`

)(
1 + `−#E11(F`)−

(
24n+ 13

`

))
p(11jn+ β11(j))

− `7p
(

11jn

`2
+ β11(j, `

−1)

)
(mod 11j+1).

If j ≥ 2 is even, then for every non-negative integer n we have

p(11j`2n+ β11(j, `)) ≡ `3
(

3

`

)(
1 + `−#E11(F`)− `5

(
−24n− 23

`

))
p(11jn+ β11(j))

− `7p
(

11jn

`2
+ β11(j, `

−1)

)
(mod 11j+1).

As in [4], we have the following corollaries.

Corollary 1.2. Let ` ≥ 5 be prime.

(1) Suppose that

#E7(F`) ≡ 1 + ` (mod 7).

If j ≥ 1 is odd (resp. even), let 0 ≤ r, s ≤ `− 1 be integers such that
(a) 24r + 17 ≡ 0 (mod `) (resp. 24r + 23 ≡ 0 (mod `))
(b) 24(r + s`) + 17 6≡ 0 (mod `2) (resp. 24(r + s`) + 23 6≡ 0 (mod `2)).

Then for every non-negative integer N we have that

p(7j`2(`2N + `s+ r) + β7(j, `)) ≡ 0 (mod 7bj/2c+2).

(2) Suppose that

#E11(F`) ≡ 1 + ` (mod 11).

If j ≥ 1 is odd (resp. even), let 0 ≤ r, s ≤ `− 1 be integers such that
(a) 24r + 13 ≡ 0 (mod `) (resp. 24r + 23 ≡ 0 (mod `))
(b) 24(r + s`) + 13 6≡ 0 (mod `2) (resp. 24(r + s`) + 23 6≡ 0 (mod `2)).

Then for every non-negative integer N we have that

p(11j`2(`2N + `s+ r) + β11(j, `)) ≡ 0 (mod 11j+1).

Furthermore, the proportion of primes ` for which #E7(F`) ≡ 1 + ` (mod 7) is 7
48

, and the

proportion of primes ` for which #E11(F`) ≡ 1 + ` (mod 11) is 11
120
.

Corollary 1.3. Let ` ≥ 5 be prime.

(1) Suppose that

#E7(F`) ≡ 1 + `− i (mod 7),

where i = ±1. If j ≥ 1 is odd (resp. even), let 0 ≤ r ≤ `− 1 be an integer such that(
24r + 17

`

)
≡ i (mod 7)

(
resp.

(
−24r − 23

`

)
≡ `3i (mod 7)

)
.

Then for every non-negative integer N we have that

p(7j`2(`N + r) + β7(j, `)) ≡ 0 (mod 7bj/2c+2).
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(2) Suppose that

#E11(F`) ≡ 1 + `− i (mod 11),

where i = ±1. If j ≥ 1 is odd (resp. even), let 0 ≤ r ≤ `− 1 be an integer such that(
24r + 13

`

)
≡ i (mod 11)

(
resp.

(
−24r − 23

`

)
≡ `5i (mod 11)

)
.

Then for every non-negative integer N we have that

p(11j`2(`N + r) + β11(j, `)) ≡ 0 (mod 11j+1).

Furthermore, the proportion of primes ` for which #E7(F`) ≡ 1 + `− i (mod 7) is 41
288

, and

the proportion of primes ` for which #E11(F`) ≡ 1 + `− i (mod 11) is 109
1200

.

Remark 1. Note that the only valid values of i are ±1 since `3 ≡ ±1 (mod 7) and `5 ≡ ±1
(mod 11) for all `.

For convenience, we will give a few values of ` for which these corollaries will apply.

p i ` such that #Ep(F`) ≡ 1 + `− i (mod p)
7 0 31, 47, 79, 97, 113, 127, 191, . . .
7 -1 7, 13 ,53, 61, 149, 151, 163, 167, . . .
7 1 23, 41, 71, 89, 103, 131, 173, 199, . . .
11 0 11, 19, 23, 41, 59, 107, 193, . . .
11 -1 5, 101, 137, 167, 181, . . .
11 1 67, 109, 131, 139, 149, 179, . . .

In addition, we give numerical evidence for the proven proportions by considering the primes
up to 30,000. Let π(X; p, i) := #{primes ` ≤ X : #Ep(F`) ≡ 1 + ` − i (mod p)} and let
π(X) := {primes ` ≤ X}.

p i π(30000;p,i)
π(30000)

limX→∞
π(X;p,i)
π(X)

7 0 0.1433 . . . 0.1458 . . .
7 1 0.1458 . . . 0.1423 . . .
7 -1 0.1529 . . . 0.1423 . . .
11 0 0.0860 . . . 0.0916 . . .
11 1 0.0878 . . . 0.0908 . . .
11 -1 0.0924 . . . 0.0908 . . .

In Section 2, we will describe the connection between the theory of modular forms and
the generating functions for p(n) in the arithmetic progressions of interest. In Section 3 we
will see that the half integer weight modular forms which arise are Hecke eigenforms, and
work to understand their eigenvalues modulo 7 and 11 using the elliptic curves E7 and E11.
In Section 4 we will use this knowledge to prove Theorem 1.1 and Corollaries 1.2 and 1.3.

2. The Work of Watson and Atkin

In this section, we will reconsider the work of Watson and Atkin in order to establish
the connection between half integer weight modular forms and the generating functions
for p(7jn + β7(j)) and p(11jn + β11(j)). First, let us consider the generating function for
p(7jn+ β7(j)).
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Theorem 2.1 (page 124 of [11]). If j ≥ 1, then the generating function for the numbers
p(7jn+ β7(j)) is of the form

∞∑
n=0

p(7jn+ β7(j))q
n =


∑

i≥1

(
xj,iq

i−1∏∞
n=1

(1−q7n)4i−1

(1−qn)4i

)
if j is odd,∑

i≥1

(
xj,iq

i−1∏∞
n=1

(1−q7n)4i
(1−qn)4i+1

)
if j is even,

where

xj,i ≡

{
5bj/2c7bj/2c+1 (mod 7bj/2c+2) if i = 1,

0 (mod 7bj/2c+2) otherwise.

In order to connect this result to the theory of modular forms, we first recall Dedekind’s
eta-function, which is given by

η(z) := q
1
24

∞∏
n=1

(1− qn),

where q := e2πiz. If χ12 is the quadratic character given by the Jacobi symbol χ12(n) :=
(
12
n

)
,

then we define

F7(z) := η17(24z) =
∞∑
n=0

a7(n)qn

G7(z) := η23(24z) =
∞∑
n=0

b7(n)qn

and note that (see [6]) F7(z) ∈ S17/2(Γ0(576), χ12) and G7(z) ∈ S23/2(Γ0(576), χ12). Then
Theorem 2.1 immediately implies the following statement.

Corollary 2.2. If j ≥ 1, then for every non-negative integer n we have

p(7jn+ β7(j)) ≡

{
5bj/2c7bj/2c+1a7(24n+ 17) (mod 7bj/2c+2) if j is odd,

5bj/2c7bj/2c+1b7(24n+ 23) (mod 7bj/2c+2) if j is even.

Proof. As in [4], note that when j is odd, we have

1

5bj/2c7bj/2c+1

∞∑
n=1

p(7jn+ β7(j))q
24n+17 ≡ q17

∞∏
n=1

(1− q7·24n)3

(1− q24n)4
≡

∞∑
n=1

a7(n)qn (mod 7),

as desired. Similarly, when j is even, we have

1

5bj/2c7bj/2c+1

∞∑
n=1

p(7jn+ β7(j))q
24n+23 ≡ q23

∞∏
n=1

(1− q7·24n)4

(1− q24n)5
≡

∞∑
n=1

b7(n)qn (mod 7),

as desired. �

In order to understand the generating function of p(11jn+ β11(j)), we first recall that the
classical Eisenstein series Ek(z) (for even k ≥ 2) is given by

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,
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where Bk is the kth Bernoulli number and σk−1(n) :=
∑

d|n d
k−1. Set

F11(z) := η13(24z)E8(24z) =
∞∑
n=0

a11(n)qn

G11(z) := η23(24z)E8(24z) =
∞∑
n=0

b11(n)qn.

Then it follows from the work of Atkin [1] that

Corollary 2.3. If j ≥ 1, then for every non-negative integer n we have

p(11jn+ β11(j)) ≡

{
43(j−1)/211ja11(24n+ 13) (mod 11j+1) if j is odd,

4(3j−4)/211jb11(24n+ 23) (mod 11j+1) if j is even.

Proof. In [1], Atkin proved the Ramanujan congruences modulo powers of 11 by defining a
sequence of functions Lj(z) by L1(z) := φ(z) | U11 and

L2j(z) := L2j−1(z) | U11

L2j+1(z) := (φ(z)L2j(z)) | U11

for j ≥ 1, where U11 is the usual U -operator and φ(z) := η(121z)
η(z)

. He proved that

Lj(z) =

{
q13/24η(11z)

∑∞
n=0 p(11jn+ β11(j))q

n j odd

q23/24η(z)
∑∞

n=0 p(11jn+ β11(j))q
n j even,

and achieved his result by showing that 11−jLj(z) has integral coefficients for all j ≥ 1. In
order to do this, he defined a basis of modular functions on Γ0(11) which includes functions
gn(z) for n ≥ 2 (defined explicitly in Appendix A of [1]). He proved that there exist integers
cj,r such that

11−jLj(z) =
∑
r

cj,rgn(z)

where cj,3 ≡ cj,4 ≡ 0 (mod 11) for all j, cj,4 ≡ 0 (mod 112) when j is even, and cj,r ≡ 0
(mod 112) for all j and r ≥ 5. Thus we have

11−jLj+1 ≡

{
cj,2g2(z) | U11 + cj,3g3(z) | U11 + cj,4g4(z) | U11 (mod 112) j odd

cj,2 (φ(z)g2(z)) | U11 + cj,3 (φ(z)g3(z)) | U11 (mod 112) j even.

Now, one can compute that g2(z) | U11 ≡ 4·11g2(z) (mod 112), (φ(z)g2(z)) | U11 ≡ 5·11g2(z)
(mod 112), and g3(z) | U11 ≡ g4(z) | U11 ≡ (φ(z)g3(z)) | U11 ≡ 0 (mod 11). Thus we have
that

11−(j+1)Lj+1 ≡

{
4cj,2g2(z) (mod 11) j odd

5cj,2g2(z) (mod 11) j even.

Then the result follows inductively from the fact that cj,2 = 1, since (see [1])

11−1L1(z) = g2(z) + 2 · 11g3(z) + 112g4(z) + 113g5(z),

and the result for j = 1, (see Lemma 3.1 of [12]) i.e., that we have

g2(z) ≡ 11−1L1(z) ≡ η(11z)η13(z)E8(z) (mod 11).
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�

3. Properties of the Forms Fi and Gi

We begin by recalling the half integer weight Hecke operators. If g(z) =
∑∞

n=0 α(n)qn ∈
Mλ+1/2(Γ0(4N), ψ) is a half integer weight modular form and p - 4N is prime, then the Hecke
operator Tλ(p

2) is given by

g | Tλ(p2) :=
∞∑
n=0

(
α(p2n) + ψ(p)

(
(−1)λn

n

)
pλ−1α(n) + ψ(p2)p2λ−1α(n/p2)

)
qn.

We say that g is a Hecke eigenform if for each prime p - 4N there is a complex number λg(p)
such that

g | Tλ(p2) = λp(g)g.

Luckily, it is already known that Fi and Gi are Hecke eigenforms (the following are special
cases of more general theorems).

Lemma 3.1 (Newman [5]). If ` ≥ 5 is prime, then define λ7,a(`) and λ7,b(`) by

λ7,a(`) =a7(17`2) +

(
51

`

)
`7

λ7,b(`) =b7(23`2) +

(
−69

`

)
`10.

Then F7 and G7 are Hecke eigenforms with eigenvalues given by λ7,a(`) and λ7,b(`), respec-
tively. That is, for every positive integer n, we have

λ7,a(`)a7(n) =a7(`
2n) +

(
3n

`

)
`7a7(n) + `15a7(n/`

2)

λ7,b(`)b7(n) =b7(`
2n) +

(
−3n

`

)
`10b7(n) + `21b7(n/`

2).

Lemma 3.2 (Garvan, Cor 3.2 [3]). If ` ≥ 5 is prime, then define λ11,a(`) and λ11,b(`) by

λ11,a(`) =a11(13`2) +

(
39

`

)
`13

λ11,b(`) =b11(23`2) +

(
−69

`

)
`18.

Then F11 and G11 are Hecke eigenforms with eigenvalues given by λ11,a(`) and λ11,b(`), re-
spectively. That is, for every positive integer n, we have

λ11,a(`)a11(n) =a11(`
2n) +

(
3n

`

)
`13a11(n) + `27a11(n/`

2)

λ11,b(`)b11(n) =b11(`
2n) +

(
−3n

`

)
`18b11(n) + `37b11(n/`

2).

Remark 2. Although Garvan did not give these formulae for the eigenvalues, they are easily
derived using the definition of the Hecke operator given above.
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In order to establish Theorem 1.1, the remaining task is to determine the eigenvalues
λ7,a(`) and λ7,b(`) (mod 7) and λ11,a(`) and λ11,b(`) (mod 11). In order to do this, we will
use the Shimura correspondence St,λ to map the half-integer weight eigenforms Fp, Gp to
integer weight eigenforms.

Suppose that g(z) =
∑∞

n=1 α(n)qn ∈ Sλ+1/2(Γ0(4N), ψ) is an eigenform with λ ≥ 2. Then
if t is any squarefree integer, define At(n) by

∞∑
n=1

At(n)

ns
:= L(s− λ+ 1, ψχλ−1χt) ·

∞∑
n=1

α(tn2)

ns
,

where χ−1 =
(−1
•

)
and χt =

(
t
•

)
. Then these values At(n) define the cusp form

St,λ(g(z)) :=
∞∑
n=1

At(n)qn ∈ S2λ(Γ0(2N), ψ2).

It is important to note that the Shimura correspondence St,λ commutes with the Hecke
operators of integral and half integral weight, i.e.,

St,λ(g | Tλ(p2)) = St,λ(g) | T λp ,

where Tλ(p
2) and T λp are the usual Hecke operators on Sλ+1/2(Γ0(4N), ψ) and S2λ(Γ0(2N), ψ2).

Using the theory of modular forms mod `, and the Shimura correspondence, we prove the
following:

Theorem 3.3. If ` ≥ 5 is prime, then

λ7,a(`) ≡ λ7,b(`) ≡ `

(
3

`

)
(1 + `−#E7(F`)) (mod 7)

λ11,a(`) ≡ λ11,b(`) ≡ `3
(

3

`

)
(1 + `−#E11(F`)) (mod 11).

Proof. First recall that F7(z) ∈ S17/2(Γ0(576), χ12) and G7(z) ∈ S23/2(Γ0(576), χ12) are eigen-
forms of the half integer weight Hecke operators with eigenvalues λ7,a(`) and λ7,b(`).

Now let F7(z) be the image of F7 under the Shimura correspondence S17,8 and G7(z) be
the image of G7 under the Shimura correspondence S23,11. Then

F7(z) =q + 114810q5 + · · · ∈ S16(Γ0(288), χtriv)

G7(z) =q + 23245050q5 + · · · ∈ S22(Γ0(288), χtriv).

Furthermore, let H7(z) =
∑∞

n=1 c7(n)qn ∈ S2(Γ0(42)) be the cusp form associated to the
elliptic curve E7 (which has conductor 42), and recall that c7(`) = 1 + ` − #E7(F`) for
primes ` - 42. Then it suffices to show that

F7(z) ≡ G7(z) ≡
∞∑
n=1

χ12(n)nc7(n)qn (mod 7).

In order to see this, first recall Ramanujan’s Theta-operator, which is given by

Θ

(
∞∑
n=1

α(n)qn

)
:=

∞∑
n=1

nα(n)qn.
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It can be shown (see [10], [6]) that

H̃ := 12ΘH7 − 2H7E2

is a cusp form of weight 4 and level 42. Now, since we have that 1 ≡ E6(z) and E2(z) ≡ E8(z)
(mod 7), it follows that

E6 ·ΘH7 =
E6

12

(
H̃ + 2H7E2

)
≡ E6

12

(
E6H̃ + 2H7E8

)
(mod 7),

and thus ΘH7 is congruent (mod 7) to a modular form in S16(Γ0(42)). In fact, more is true;
it is congruent to a modular form in S16(Γ0(6)). This follows from a theorem of Sturm (see
[9]) by computing the first few coefficients (in this case, 128) of ΘH7 and the basis elements
of S16(Γ0(6)) (the first 200 terms of the q-expansions of the 13 basis elements of S16(Γ0(6))
were calculated using Sage). Now, the χ12 quadratic twist (see [6])

(ΘH7)χ12
=
∞∑
n=1

n

(
12

n

)
c7(n)qn

is congruent to a modular form in S16(Γ0(864)).
Since F7(z) ∈ S16(Γ0(864)) as well, we may check that

∞∑
n=1

n

(
12

n

)
c7(n)qn ≡ F7(z) (mod 7)

using the theorem of Sturm by checking that the first 2304 coefficients agree (mod 7). How-
ever, since H7 and F7 are both eigenforms, it follows that we need only check the coefficients
of prime index, i.e., that

`

(
12

`

)
c7(`) ≡

1

7
p

(
7 · 17`2 − 17

24
+

17 · 7 + 1

24

)
+

(
51

`

)
`7 (mod 7)

for all primes 3 < ` < 2304 (using the definition of λ7,a(`) in Lemma 3.1, and Corol-
lary 2.2 in the case where j = 1). Although this requires us to compute p(n) for a few
values of n up to 26,161,203, it is a fairly short calculation in Sage using the command
Partitions(n).cardinality() for the right hand side. Alternately, one could compute
coefficients of F7(z) using its definition, noting that η(z)17 ≡ η(7z)2η(z)3 (mod 7).

Now, to show that G7 ≡
∑∞

n=1 χ12(n)nc7(n)qn (mod 7), we first note that both forms are
congruent to modular forms in S22(Γ0(288)). Thus by the theorem of Sturm, we need only
check the first 1056 coefficients. As before, we need only check that

`

(
12

`

)
c7(`) ≡

1

5 · 72
p

(
72 · 23`2 − 23

24
+

23 · 72 + 1

24

)
+

(
−69

`

)
`10 (mod 7)

for all primes 3 < ` < 1056. This proves the first statement of the theorem.
The second statement is proved similarly: as before, let F11(z) be the image of F11 un-

der the Shimura correspondence S13,14 and G7(z) be the image of G7 under the Shimura
correspondence S23,19. Then

F11(z) =q − 1992850350q5 + · · · ∈ S28(Γ0(288), χtriv)

G11(z) =q − 4477461318150q5 + · · · ∈ S38(Γ0(288), χtriv).
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Also let H11(z) =
∑∞

n=1 c11(n)qn ∈ S2(Γ0(726)) be the cusp form associated to the elliptic
curve E11 (which has conductor 726). We wish to show that

F11(z) ≡ G11(z) ≡
∞∑
n=1

χ12(n)n3c11(n)qn (mod 11).

We have that

Θ3H11 =
∞∑
n=1

n3c11(n)qn

is congruent to a modular form in S38(Γ0(726)). In fact, more is true; it is congruent to a
modular form in S28(Γ0(6)) (again, this can be verified using Sturm’s theorem). Now, the
χ12 quadratic twist (

Θ3H11

)
χ12

=
∞∑
n=1

n3

(
12

n

)
c11(n)qn

is congruent to a modular form in S28(Γ0(864)).
Since F11(z) ∈ S28(Γ0(864)) as well, we may check that

∞∑
n=1

n3

(
12

n

)
c11(n)qn ≡ F11(z) (mod 11)

using Sturm’s theorem by checking that the first 4032 coefficients agree (mod 11). But as
before, we need only check the coefficients of prime index, i.e., that

`3
(

12

`

)
c11(`) ≡

1

11
p

(
11 · 13(`2 − 1)

24
+

13 · 11 + 1

24

)
+

(
39

`

)
`13 (mod 11)

for all primes 3 < ` < 4032.
Then to show that G11 ≡

∑∞
n=1 χ12(n)n3c11(n)qn (mod 11), we first note that they are

both congruent to modular forms in S38(Γ0(288)). Thus as before, we need only check that

`3
(

12

`

)
c11(`) ≡

1

4 · 112
p

(
112 · 23(`2 − 1)

24
+

23 · 112 + 1

24

)
+

(
−69

`

)
`18 (mod 11)

for all primes 3 < ` < 1824. This completes the proof of the theorem. �

4. Proof of Theorem 1.1 and Corollaries 1.2 and 1.3

Proof of Theorem 1.1. By Lemma 3.1 and Theorem 3.3, we have that

a7(`
2n) ≡ `

(
3

`

){
1 + `−#E7(F`)−

(
n

`

)}
a7(n)− `3a7(n/`2) (mod 7)

b7(`
2n) ≡ `

(
3

`

){
1 + `−#E7(F`)− `3

(
−n
`

)}
b7(n)− `3b7(n/`2) (mod 7).

Then replacing n with 24n + 17 and 24n + 23, respectively and simplifying using Corollary
2.2 yields the results in (1).
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Similarly, by Lemma 3.2 and Theorem 3.3, we have that

a11(`
2n) ≡ `3

(
3

`

){
1 + `−#E11(F`)−

(
n

`

)}
a11(n)− `7a11(n/`2) (mod 11)

b7(`
2n) ≡ `3

(
3

`

){
1 + `−#E11(F`)− `5

(
−n
`

)}
b11(n)− `7b11(n/`2) (mod 11)

Then replacing n with 24n+ 13 and 24n+ 23, respectively, and simplifying using Corollary
2.3 yields the results in (2). �

Proof of Corollary 1.2. Replace n with N`2 + `s + r in part (1) of Theorem 1.1 and note
that

7j(`2N + `s+ r)

`2
+ β7(j, `

−1)

cannot be an integer by condition (b). Therefore since p(7jn + β7(j)) ≡ 0 (mod 7bj/2c+1)
we have the result using the condition on `, and (a). This proves (1), and the proof of (2)
proceeds similarly.

To prove the statements regarding proportions, we must consider the associated Galois
representation

ρEp,p : Gal(Q/Q)→ GL2(Fp)
for p ∈ {7, 11}. If we let Np be the conductor of Ep, then it is well known that for any prime
` - pNp, we have that

tr ρEp,p(Frob`) ≡ cp(`) = 1 + `−#Ep(F`) (mod p)

det ρEp,p(Frob`) ≡ ` (mod p).

Now recall a result of Serre (Proposition 19 of [8]), which says that for a prime p ≥ 5 and
subgroup G ⊆ GL2(Fp), if

(a) G contains an element s such that tr(s)2 − 4det(s) is a nonzero square in Fp, and
tr(s) 6= 0,

(b) G contains an element s′ such that tr(s′)2 − 4det(s′) is not a square in Fp, and
tr(s) 6= 0,

(c) G contains an element s′′ such that u := tr(s′′)2

det(s′′)
is distinct from 0, 1, 2, 4 (in Fp), and

u2 − 3u+ 1 6= 0, and
(d) the map det : G→ Fp is surjective,

then G = GL2(Fp). Thus by considering a few values of `, one can easily check that ρEp,p :

Gal(Q/Q)→ GL2(Fp) is surjective for p = 7, 11.
Now, to find the proportion of primes ` for which #Ep(F`) ≡ 1+`, we may apply the Cheb-

otarev Density Theorem, which implies that the desired proportion is simply the proportion
of elements of GL2(Fp) with trace 0. The result follows easily, since #GL2(F7) = 2016, where
294 of these elements have trace 0 (and #GL2(F11) = 13200, where 1210 elements have trace
0). �

Proof of Corollary 1.3. Similarly, replace n by `N + r in part (1) of Theorem 1.1 and note
that for j odd we have

7j(`2N + `s+ r)

`2
+ β7(j, `

−1)
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cannot be an integer since 24r + 13 6≡ 0 (mod `). Therefore since p(7jn + β7(j)) ≡ 0
(mod 7bj/2c+1) we have the result using the conditions on ` and r. This proves (1) for
odd j, and the proofs of (1) for even j and (2) proceed similarly.

The statements regarding proportions are also proved as in Corollary 1.2, noting that
there are 287 elements of GL2(F7) with trace ±1, and 1199 elements of GL2(F11) with trace
±1. �
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