Calculateds are allowed. Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the last page. **For full credit you must show your work. Answers read off the calculator will not be accepted.**

Name: __

1. Compute the following limits.
 (a) (5 points) \(\lim_{x \to 0} \frac{5x^2 - 6x}{e^x - 1} \)

 (b) (5 points) \(\lim_{x \to \infty} e^{-x}(3x - 4) \)

 (c) (5 points) \(\lim_{x \to 1^+} x^{\frac{1}{x-1}} \) (Hint: use the logarithmic approach.)

2. (5 points) True or False. A function \(f(x) \) can only have one absolute (global) maximum and one absolute (global) minimum on a closed interval \([a, b]\). Explain.
3. (6 points) Find the extreme values of \(f(x) = \frac{1}{5}x^5 - 100x \) on \([-20, 15]\).

4. (6 points) Determine the inflection points of \(g(x) = x^7 - \frac{42}{5}x^5 \), the intervals on which the function is concave up and the intervals on which the function is concave down.

5. (6 points) Find the critical points of \(y = 13x - e^{7x} \) then use the first derivative test to determine the local maximum(s) and local minimum(s) of the function.
6. (6 points) Find the critical points of \(y = x^{5/2} - 10x^2 \) and then use the second derivative test to determine the local maximum(s) and local minimum(s) of the function.

7. (5 points) What is the relationship between \(\frac{dV}{dt} \) and \(\frac{dr}{dt} \) if \(V = \frac{4}{3} \pi r^3 \)?

8. (8 points) A cylindrical water tank is being filled at a rate of \(9 \text{ ft}^3/\text{min} \). It’s circular base has radius \(5 \text{ ft} \). How fast does the water level rise?

9. (8 points) A UFO flies directly over a calculus classroom at a height of \(8 \text{ km} \) at a speed of \(500 \text{ km/hr} \). Assuming it maintains constant speed and altitude, what is the rate of change in the distance from the classroom to the UFO 20 minutes later?
10. (5 points) Can a function with the real numbers as its domain, in other words its domain is $(-\infty, \infty)$, that takes on only negative values have a positive derivative? If it is possible, write “YES” and sketch an example of such a graph. If it is not possible, write “NO.”

11. (12 points) Sketch a graph of a function, f, which satisfies the following requirements:
 (a) $f'' > 0$ in the interval $(-3, 5)$ and $f'' < 0$ in the intervals $(-\infty, -3)$ and $(5, \infty)$
 (b) $f' = 0$ at $x = 0$
 (c) $f' < 0$ in the interval $(-5, 0)$

12. (6 points) Find a point c satisfying the Mean Value Theorem (MVT) for the function $f(x) = x^2 - 8$ and the interval $[-1, 2]$.
13. (12 points) Using the graph below of \(f' \), the derivative of some function \(f \), answer the following questions.

(a) What are the critical points of \(f \)?

(b) For what value(s) of \(x \), if any, does \(f \) have a minimum (either local or absolute)?

(c) On what interval(s) is \(f \) increasing?

(d) On approximately what interval(s) is \(f \) concave down?