Math 125 Exam 1 Spring 05 Name
No Work-No Credit SS#

For numerical answers use the full display of digits from the calculator. If calculating $ round to the nearest cent.

1) Use this graph of \(f(x) \) to evaluate the following limits.

a) \(\lim_{{x \to 2^-}} f(x) = 2 \)
b) \(\lim_{{x \to 2^+}} f(x) = 3 \)
c) \(\lim_{{x \to 2^-}} g(x) = \text{DNE} \)

d) \(\lim_{{x \to 3^-}} f(x) = 4 \)
e) \(f(2) = 3 \)
f) \(f(3) = \text{DNE} \)

2) Given \(J(x) = \frac{1}{x-1} + \sqrt{x} \) determine the domain of \(J(x) \), \(D_J \).

For \(\frac{1}{x-1} \) we have that \(x \neq 1 \) and for \(\sqrt{x} \) we have \(x \geq 0 \). These two sets will overlap for \(D_J = [0,1) \cup (1,\infty) \).

3) Determine the vertex of the quadratic function \(Q(x) = 2x^2 - 3.2x + 5 \).

For the vertex \(x = \frac{-b}{2a} = \frac{3.2}{4} = 0.8 \) . Then the y-value is \(Q(0.8) = 3.72 \), so \((0.8,3.72) \) is the vertex.

4) Given \(f(x) = \frac{1}{x+2} \) and \(g(x) = 1-x \) evaluate and simplify:

a) \((f \circ g)(x) = f(g(x)) = f(1-x) = \frac{1}{(1-x)+2} = \frac{1}{3-x} \)

b) \((g \circ f)(x) = g(f(x)) = g\left(\frac{1}{x+2}\right) = 1 - \frac{1}{x+2} = \frac{x+2-1}{x+2} = \frac{x+1}{x+2} \)
5) State the formal definition of the derivative of f(x):

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

b) K(x) is continuous at x = a if \(\lim_{x \to a} f(x) = f(a) \).

6) Evaluate:

a) \(\lim_{x \to 2} \frac{x^2 - 4}{x^2 - x - 2} = \lim_{x \to 2} \frac{(x-2)(x+2)}{(x-2)(x+1)} \lim_{x \to 2} \frac{x+2}{x+1} = \frac{4}{3} \).

7) Given \(f(x) = \frac{x-2}{x+1} \) determine the average rate of change from \(x = -2 \) to \(x = 0 \).

Here \(h = 2 \) so we have \(\frac{f(0) - f(-2)}{2} = \frac{-2-4}{2} = -3 \).

8) Use the formal definition of the derivative to determine \(f'(x) \) if \(f(x) = x - 2x^2 \).

\[
\begin{align*}
f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\
&= \lim_{h \to 0} \frac{\left[(x+h) - 2(x+h)^2 \right] - \left[x - 2x^2 \right]}{h} \\
&= \lim_{h \to 0} \frac{\left[x + h - 2x^2 - 4xh - 2h^2 \right] - \left[x - 2x^2 \right]}{h} \\
&= \lim_{h \to 0} \frac{-4xh - 2h^2}{h} \\
&= \lim_{h \to 0} \frac{h(1-4x-2h)}{h} = \lim_{h \to 0} (1-4x-2h) = 1 - 4x.
\end{align*}
\]