Review for the second midterm
Ch2, Ch3 (3.1, 3.2, 3.3)

1. \(f : D \to \mathbb{R} \) has a limit \(L \) at \(x_0 \) iff \(\forall \epsilon > 0, \exists \delta > 0, \forall 0 < |x - x_0| < \delta \), we have \(|f(x) - L| < \epsilon \).

- \(f \) has a limit at \(x_0 \) iff for each sequence \(\{x_n\} \subset D \setminus \{x_0\} \) converging to \(x_0 \), \(\{f(x_n)\} \) is Cauchy
- If \(f \) has a limit at \(x_0 \), then \(\exists \) neighborhood \(Q \) of \(x_0 \), \(\exists M \in \mathbb{R} \) such that \(|f(x)| \leq M, \forall x \in Q \cap D \).

2. If \(f, g : D \to \mathbb{R} \) have limits \(L_1, L_2 \) at \(x_0 \), then
 (a) \(f + g, fg \) have limits \(L_1 + L_2, L_1L_2 \) at \(x_0 \),
 (b) \(f/g \) has limit \(L_1/L_2 \) provided \(L_2 \neq 0 \),
 (c) If \(f(x) \leq g(x), \forall x \in D \), then \(L_1 \leq L_2 \).

- If \(f : D \to \mathbb{R} \) is bounded in a neighborhood of \(x_0 \), and \(g : D \to \mathbb{R} \) has limit 0 at \(x_0 \), then \(fg \) has limit 0 at \(x_0 \).

3. \(f \) is monotone iff \(f \) is either increasing or decreasing

- Let \(f : [\alpha, \beta] \to \mathbb{R} \) be monotone. Then
 (a)
 \[J = \{x \in (\alpha, \beta) : f \text{ does not have a limit at } x \} \]
 is countable,
 (b) \(\forall x_0 \not\in J, \lim_{x \to x_0} f(x) = f(x_0) \).

4. \(f : D \to \mathbb{R} \) is continuous at \(x_0 \in D \) iff \(\forall \epsilon > 0, \exists \delta > 0, \forall |x - x_0| < \delta \), we have \(|f(x) - f(x_0)| < \epsilon \).

5. The following statements are equivalent:
 (a) \(f \) is continuous at \(x_0 \),
 (b) \(f \) has a limit \(f(x_0) \) at \(x_0 \),
 (c) For every sequence \(\{x_n\} \subset D \) converging to \(x_0 \), the sequence \(\{f(x_n)\} \) converges to \(f(x_0) \).
6. If \(f, g : D \to \mathbb{R} \) are continuous at \(x_0 \in D \), then

 (a) \(f + g, fg \) are continuous at \(x_0 \),

 (b) \(f/g \) is continuous at \(x_0 \) provided \(g(x_0) \neq 0 \).

7. If \(f : D \to \mathbb{R} \) and \(g : D' \to \mathbb{R} \) with \(\text{im}(f) \subset D' \) where \(f \) is continuous at \(x_0 \) and \(g \) is continuous at \(f(x_0) \), then \(g \circ f : D \to \mathbb{R} \) is continuous at \(x_0 \).

8. \(f : D \to \mathbb{R} \) is uniformly continuous on \(E \subset D \) iff \(\forall \epsilon > 0, \exists \delta > 0, \forall x, y \in E, |x - y| < \delta, \) we have \(|f(x) - f(y)| < \epsilon \).

 • If \(f : D \to \mathbb{R} \) is uniformly continuous and \(x_0 \) is an accumulation point of \(D \), then \(f \) has a limit at \(x_0 \).

9. \(E \subset \mathbb{R} \)

 • \(E \) closed if it contains all its accumulation points.

 • \(E \) open if \(\forall x \in E, \exists \) neighborhood of \(Q \) of \(x, Q \subset E \).

 • \(E \) compact if every open cover has a finite subcover.

 • \(E \) closed iff \(\mathbb{R} \setminus E \) open

 • \(E \) compact iff \(E \) is closed and bounded.

10. If \(f : D \to \mathbb{R} \) is continuous and \(D \) is compact, then \(f \) is uniformly continuous.