11. Suppose f, g, and $h : D \to \mathbb{R}$ where x_0 is an accumulation point of D, $f(x) \leq g(x) \leq h(x)$ for all $x \in D$, and f and h have limits at x_0 with $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x)$. Prove that g has a limit at x_0 and

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x).$$

Proof: Denote

$$L = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x).$$

Then, $\forall \, \epsilon > 0$, $\exists \, \delta_1 > 0$, when $0 < |x - x_0| < \delta_1$, we have

$$|f(x) - L| < \epsilon$$

and hence

$$L - \epsilon < f(x) < L + \epsilon.$$

Similarly, $\forall \, \epsilon > 0$, $\exists \, \delta_2 > 0$, when $0 < |x - x_0| < \delta_2$, we have

$$L - \epsilon < h(x) < L + \epsilon.$$

Let $\delta = \min(\delta - 1, \delta_2)$. When $0 < |x - x_0| < \delta$, we have

$$L - \epsilon < f(x) \leq g(x) \leq h(x) < L + \epsilon.$$

namely

$$|g(x) - L| < \epsilon.$$

Thus

$$\lim_{x \to x_0} g(x) = L.$$

12. Suppose $f : D \to \mathbb{R}$ has a limit at x_0. Prove that $|f| : D \to \mathbb{R}$ has a limit at x_0 and that

$$\lim_{x \to x_0} |f(x)| = \left| \lim_{x \to x_0} f(x) \right|.$$

Proof: Denote

$$\lim_{x \to x_0} f(x) = L.$$
Then, \(\forall \epsilon > 0, \exists \delta > 0 \), when \(0 < |x - x_0| < \delta \), we have
\[
|f(x) - L| < \epsilon.
\]
Thus,
\[
||f(x) - |L|| \leq |f(x) - L| < \epsilon.
\]
Therefore,
\[
\lim_{x \to x_0} |f(x)| = |L|.
\]

13. Define \(f: \mathbb{R} \to \mathbb{R} \) by \(f(x) = x - [x] \). Determine those points at which \(f \) has a limit, and justify your conclusion.
Solution: If \(x_0 \in \mathbb{Z} \), then there is \(n \in \mathbb{Z} \) such that \(k < x_0 < k + 1 \). For any \(\epsilon > 0 \), let \(\delta = \min(x_0 - k, k + 1 - x_0, \epsilon) \), for \(0 < |x - x_0| < \delta \), we have
\[
|f(x) - f(x_0)| = |x - n - x_0 + n| = |x - x_0| < \delta \leq \epsilon.
\]
Thus, \(f \) has a limit at \(x_0 \).

If \(x_0 \in \mathbb{Z} \), let \(x_n = x_0 - \frac{1}{2n} \) and \(x'_n = x_0 + \frac{1}{2n} \). Then \(x_n, x'_n \to x_0 \), while
\[
f(x_n) = x_n - x_0 + 1 \to 1
\]
and
\[
f(x'_n) = x'_n - x_0 \to 0 \neq 1.
\]
Thus, \(f \) does not have a limit at \(x_0 \). Hence, \(f \) has a limit at non-integer points.

14. Define \(f: \mathbb{R} \to \mathbb{R} \) as follows:
\[
f(x) = \begin{cases}
8x & \text{if } x \text{ is a rational number}, \\
2x^2 + 8 & \text{if } x \text{ is an irrational number}.
\end{cases}
\]
Use sequences to guess at which points \(f \) has a limit, then use \(\epsilon \)'s and \(\delta \)'s to justify your conclusion.
Solution: Take \(r_n \to x_0 \) be rational and \(q_n \to x_0 \) to be irrational. Then
\[
f(r_n) = 8r_n \to 8x_0
\]
and
\[
f(q_n) = 2q_n^2 + 8 \to 2x_0^2 + 8.
\]
For f to have limit, we must have

$$8x_0 = 2x_0^2 + 8.$$

Hence, $x_0 = 2$ and $L = 16$. Now we prove this result.

For any $\epsilon > 0$, let $\delta = \min\left(\frac{\epsilon}{10}, 1\right)$ and $0 < |x - 2| < \delta$. If x is rational, then

$$|f(x) - 16| = |8x - 16| = 8|x - 2| < 8\delta \leq \epsilon.$$

If x is irrational, then

$$|f(x) - 16| = |2x^2 + 8 - 16| = 2|x^2 - 4| = 2|x - 2||x + 2| < 2\delta(3 + 2) = 12\delta \leq \epsilon.$$

Thus, $\lim_{x \to 2} f(x) = 16$. \hfill \blacksquare

P80. 16, 17, 19, 22.

16. Define $f : (0, 1) \to \mathbb{R}$ by $f(x) = \frac{x^3 + 6x^2 + x}{x^2 - 6x}$. Prove that f has a limit at 0 and find the limit.

Solution:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^3 + 6x^2 + x}{x^2 - 6x}$$

$$= \lim_{x \to 0} \frac{x^2 + 6x + 1}{x - 6}$$

$$= -\frac{1}{6}.$$

\hfill \blacksquare

17. Define $f : \mathbb{R} \to \mathbb{R}$ as follows

$$f(x) = \begin{cases}
 x - \lfloor x \rfloor & \text{if } \lfloor x \rfloor \text{ is even}, \\
 x - \lfloor x + 1 \rfloor & \text{if } \lfloor x \rfloor \text{ is odd}.
\end{cases}$$

Determine those points where f has a limit, and justify your conclusion.

Solution. Suppose x_0 is not an integer with $\lfloor x \rfloor$ even. For x near x_0 we have $f(x) = x - \lfloor x \rfloor$ and hence, f has a limit at x_0 by problem 13.

Suppose x_0 is not an integer with $\lfloor x \rfloor$ odd. For x near x_0 we have $f(x) = x - \lfloor x \rfloor - 1$ and hence, f has a limit at x_0 by problem 13 and the addition property of the limit.
Suppose \(x_0 \) is an even integer, say \(2k \). For any \(\epsilon > 0 \), let \(\delta = \min(\epsilon, 1) \). When \(0 < |x - x_0| < \delta \), we have
\[
|f(x) - 0| = |x - 2k| < \delta \leq \epsilon.
\]
Thus, \(f \) has a limit 0 at \(x_0 \).

Suppose \(x_0 \) is an odd integer, say \(2k + 1 \). Let \(r_n = 2k + 1 + \frac{1}{2n} \) and \(q_n = 2k + 1 - \frac{1}{2n} \). Then \(r_n, q_n \to x_0 \) while
\[
f(r_n) = r_n - (2k + 2) \to -1
\]
and
\[
f(q_n) = q_n - 2k \to 1 \neq -1.
\]
Thus \(f \) does not have a limit at all odd integers. \(\Box \)

19. Define \(f : (0, 1) \to \mathbb{R} \) by \(f(x) = \frac{\sqrt{9 - x} - 3}{x} \). Prove that \(f \) has a limit at 0 and find it.

Solution:
\[
\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{9 - x} - 3}{x}
= \lim_{x \to 0} \frac{(\sqrt{9 - x} - 3)(\sqrt{9 - x} + 3)}{x(\sqrt{9 - x} + 3)}
= \lim_{x \to 0} \frac{(9 - x - 3^2)}{x(\sqrt{9 - x} + 3)}
= \lim_{x \to 0} \frac{-1}{\sqrt{9 - x} + 3}
= \frac{-1}{3} = -\frac{1}{6}.
\]
\(\Box \)

22. Show by example that, even though \(f \) and \(g \) fail to have limits at \(x_0 \), it is possible for \(f + g \) to have a limit at \(x_0 \). Give similar examples for \(fg \) and \(f \cdot g \).

Solution. Let
\[
f(x) = [x] \text{ and } g(x) = x - [x].
\]
Then \(f \) and \(g \) fail to have limits at 0, but \(f + g = x \) has a limit at 0.

For \(fg \), we take \(f(x) = \frac{1}{[x]} \) and \(g(x) = [x] \) with \(x_0 = 1 \).

For \(f \cdot g \), we take \(f(x) = g(x) = [x] \) and \(x_0 = 1 \).