1. (a) Find the Fourier sine series, the Fourier cosine series and the full Fourier series expansion of \(e^x \) on \((0, 2)\) or \((-2, 2)\) as appropriate. (Note that once you’ve done the work for finding the sine and cosine series coefficients, you need only divide by 2 and change the limits of integration in the integrals used to find the coeffs for the full series - this will save you alot of work!)

(b) Use MATLAB to plot the approximation by each type of series (for example, using the full series we have \(f(x) \approx \frac{1}{2}A_0 + \sum_{n=1}^{N}(A_n \cos(n\pi x/l) + B_n \sin(n\pi x/l)) \) for \(N = 3, 5, 10, 100 \), each one plotted on the same axes along with a plot of the actual function \(f(x) = e^x \) (you should have one plot for each type of Fourier series). All of these plots should only be over the interval \([-2, 2]\) - and make sure you label each curve. [Let me know if you need some guidance on these MATLAB parts]

Solution:
For the sine series, we want to write
\[
e^x = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{2}\right)
\]
and we need to find the coefficients \(A_n \) that make this equality true.

\[
A_n = \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) dx
\]

\[
= -\frac{2}{n\pi} e^x \cos\left(\frac{n\pi x}{2}\right)|_0^2 + \frac{2}{n\pi} \int_0^2 e^x \cos\left(\frac{n\pi x}{2}\right) dx
\]

\[
= -\frac{2}{n\pi} (e^2 (-1)^n - 1) + \frac{4}{n^2\pi^2} e^x \sin\left(\frac{n\pi x}{2}\right)|_0^2 - \frac{4}{n^2\pi^2} \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) dx
\]

\[
= -\frac{2}{n\pi} (e^2 (-1)^n - 1) - \frac{4}{n^2\pi^2} \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) dx
\]

We can add the final integral to both sides to get that
\[
(1 + \frac{4}{n^2\pi^2}) \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) dx = -\frac{2}{n\pi} (e^2 (-1)^n - 1)
\]
or
\[
A_n = \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) dx = -\frac{2n\pi}{n^2\pi^2 + 4} (e^2 (-1)^n - 1)
\]
Similarly, we can find the coeffs for the cosine series by:

\[B_n = \int_0^2 e^x \cos\left(\frac{n\pi x}{2}\right) \, dx \]
\[= \frac{2}{n\pi} e^x \sin\left(\frac{n\pi x}{2}\right) \bigg|_0^2 - \frac{2}{n\pi} \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) \, dx \]
\[= \frac{4}{n^2\pi^2} e^x \cos\left(\frac{n\pi x}{2}\right) \bigg|_0^2 - \frac{4}{n^2\pi^2} \int_0^2 e^x \cos\left(\frac{n\pi x}{2}\right) \, dx \]
\[= \frac{4}{n^2\pi^2} \left(e^2(-1)^n - 1\right) - \frac{4}{n^2\pi^2} \int_0^2 e^x \cos\left(\frac{n\pi x}{2}\right) \, dx \]

We can add the final integral to both sides to get that

\[(1 + \frac{4}{n^2\pi^2}) \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) \, dx = \frac{4}{n^2\pi^2} \left(e^2(-1)^n - 1\right) \]

or

\[B_n = \int_0^2 e^x \sin\left(\frac{n\pi x}{2}\right) \, dx = \frac{4}{n^2\pi^2 + 4}(e^2(-1)^n - 1) \]

and \(B_0 = \int_0^2 e^x \, dx = e^2 - 1. \)
If we use the same integration by parts, but change our limits of integration to \([-2, 2]\) in order to find the full Fourier series for \(e^x\), we get

\[
A_n = \frac{1}{2} \int_{-2}^{2} e^x \sin \left(\frac{n \pi x}{2}\right) \, dx
= -\frac{(-1)^n}{n \pi} \left(e^2 - e^{-2}\right) - \frac{2}{n^2 \pi^2} \int_{0}^{2} e^x \sin \left(\frac{n \pi x}{2}\right) \, dx
\]
or \(A_n = \frac{(-1)^n n \pi}{4 + n^2 \pi^2} (e^2 - e^{-2})\).

Similarly,

\[
B_n = \frac{1}{2} \int_{-2}^{2} e^x \cos \left(\frac{n \pi x}{2}\right) \, dx
= \frac{2(-1)^n}{n^2 \pi^2} (e^2 - e^{-2}) - \frac{2}{n^2 \pi^2} \int_{-2}^{2} e^x \cos \left(\frac{n \pi x}{2}\right) \, dx
\]

so that \(B_n = \frac{2(-1)^n}{4 + n^2 \pi^2} (e^2 - e^{-2})\). We also have \(B_0 = \frac{1}{2} \int_{-2}^{2} e^x \, dx = \frac{e^2 - e^{-2}}{2}\).
(c) Now plot (one for each FS type) just the approximate Fourier series for $x \in [-10, 10]$ with $N = 10$. What do you notice? Explain the differences in what you see.

Solution
In the case of the sine series, we see the result we had on $[0, 2]$ mirrored over the line $x = y$ to $[-2, 0]$ (so that it is odd) and then the region from $[-2, 2]$ is repeated periodically over the whole line. This is because a sine series is always an odd function and of period $2l = 4$.
In the case of the cosine series, we see the result we had on $[0, 2]$ mirrored over the y-axis to $[-2, 0]$ (so that it is even) and then the region from $[-2, 2]$ is repeated periodically over the whole line. This is because a cosine series is always an even function and of period $2l = 4$.
Fourier Cosine Series for e^x defined over $[-2,2]$ plotted for x in $[-10,10]$

In the case of the full series, we see the plot for the full FS obtained for $(-2,2)$ repeated periodically of period 4 across the real line. This is because the full fourier series is always a periodic function of period $2l$, and the full fourier series was created to match e^x on the fundamental period interval $(-2,2)$.
2. Show that IF $U(x)$ is a (steady-state) solution to $U_{xx} = 0$ on $(0, l)$ with

$$
U(0) = g \\
U(l) = h
$$

for some fixed constants g, h, and IF \tilde{u} is a solution to $\tilde{u}_{xx} = \tilde{u}_t$ on $(0, l)$ with

$$
\tilde{u}(0, t) = 0 \\
\tilde{u}(l, t) = 0
$$

where $\tilde{u}(x, 0) = f(x) - U(x)$, THEN $u(x, t) = \tilde{u}(x, t) + U(x)$ solves $u_{xx} = u_t$ where

$$
\begin{align*}
 u(0, t) &= g \\
 u(l, t) &= h
\end{align*}
$$

and $u(x, 0) = f(x)$.

[**NOTE: The point of this problem is that it allows us to solve BVP’s with nonhomogeneous boundary conditions by building a solution from the homogeneous b.c. problem and the corresponding steady-state problem... Notice that the seperation of variables technique breaks down if we have inhomogeneous b.c.’s]

Solution:

Letting $u = \tilde{u} + U$, we have $u_t = \tilde{u}_t + U_t = \tilde{u}_t + 0$ since U is independent of t. Also, we have $u_{xx} = \tilde{u}_{xx} + U_{xx} = \tilde{u}_{xx} + 0$, since $U_{xx} = 0$. By the PDE for \tilde{u}, we then have $u_t = u_{xx}$.
Finally, \(u(0, t) = \tilde{u}(0, t) + U(0) = 0 + g = g \) and \(u(l, t) = \tilde{u}(l, t) + U(l) = 0 + h = h \). The initial condition is obtained by \(u(x, 0) = \tilde{u}(x, 0) + U(x) = f(x) - U(x) + U(x) = f(x) \).

3. Solve problem 8 from section 5.1 of Strauss using exercise one above.

The system we want to solve is: \(u_t = u_{xx} \) on \([0, 1]\), with conditions \(u(0, t) = 0, u(1, t) = 1, u(x, 0) = 5x/2 \) for \(x \in (0, 2/3) \) and \(u(x, 0) = 3 - 2x \) for \(x \in (2/3, 1) \). The steady state solution to this problem satisfies \(U_{xx} = 0 \) and \(U(0) = 0, U(1) = 1 \), so \(U(x) = x \). We need to then solve the homogeneous dirichlet bc heat equation \(\tilde{u}_t = \tilde{u}_{xx} \) with \(\tilde{u}(0, t) = 0 \) and \(\tilde{u}(1, t) = 0 \), and \(\tilde{u}(x, 0) = f(x) - x \). We know the general solution to this BVP is \(u(x, t) = \sum_{n=1}^{\infty} A_n e^{-n^2 \pi^2 t} \sin(n \pi x) \), so applying the initial condition we have

\[
\begin{align*}
\sum_{n=1}^{\infty} A_n \sin(n \pi x) = f(x) - x.
\end{align*}
\]

We can find the coefficients \(A_n \) by recognizing this has the form of a Fourier sine series, and so

\[
A_n = 2 \int_0^1 (f(x) - x) \sin(n \pi x) \, dx = 2 \int_0^{2/3} \frac{3x}{2} \sin(n \pi x) \, dx + 2 \int_{2/3}^1 (3 - 3x) \sin(n \pi x) \, dx.
\]

Integrating we have

\[
A_n = 3 \left(\frac{-x}{n \pi} \cos(n \pi x) \bigg|_0^{2/3} + \frac{1}{n^2 \pi^2} \sin(n \pi x) \bigg|_0^{2/3} \right)
+ 6 \left(\frac{-1}{n \pi} \cos(n \pi x) \bigg|_0^{1/2} + \frac{x}{n \pi} \cos(n \pi x) \bigg|_0^{1/2} - \frac{1}{n^2 \pi^2} \cos(n \pi x) \bigg|_0^{1/2} \right)
+ \left(\frac{-6(1)^n}{n \pi} + \frac{6}{n \pi} \cos(2n \pi / 3) + \frac{6(1)^n}{n \pi} - \frac{4}{n \pi} \cos(2n \pi / 3) - \frac{6(1)^n}{n^2 \pi^2} + \frac{6}{n^2 \pi^2} \cos(2n \pi / 3) \right)
= \frac{6}{n^2 \pi^2} \cos(2n \pi / 3) - \frac{6(1)^n}{n^2 \pi^2} + \frac{3}{n^2 \pi^2} \sin(2n \pi / 3)
\]

4. A string (with density \(\rho = 1 \) and tension \(T = 4 \)) with fixed ends at \(x = 0 \) and \(x = 10 \) is hit by a hammer so that \(u(x, 0) = 0 \) and

\[
\frac{\partial u}{\partial t}(x, 0) = \begin{cases} V & \text{if } x \in [-\delta + 5, \delta + 5] \\ 0 & \text{otherwise}. \end{cases}
\]

Find the height of the string \(u(x, t) \) for all \(x \in (0, 10) \) and all \(t > 0 \). (Your answer WILL be a bit messy...)

Solution

Our solution to the BVP is \(u(x, t) = \sum_{n=1}^{\infty} (A_n \sin(\frac{n \pi t}{5}) + B_n \cos(\frac{n \pi t}{5})) \sin(\frac{n \pi x}{10}) \). Applying the first initial condition we have

\[
u(x, 0) = \sum_{n=1}^{\infty} B_n \sin(\frac{n \pi x}{10}) = 0
\]
so that $B_n = 0$ for every n. Applying the second initial condition, we have

$$\frac{\partial u}{\partial t}(x, 0) = \sum_{n=1}^{\infty} \frac{n\pi A_n}{5} \sin\left(\frac{n\pi x}{10}\right) \begin{cases} V & \text{if } x \in [-\delta + 5, \delta + 5] \\ 0 & \text{otherwise} \end{cases}$$

We can now use the fact that we have a Fourier sine series here to find the coefficients A_n. We will need

$$\frac{n\pi A_n}{5} = \frac{2}{10} \int_{5-\delta}^{5+\delta} V \sin\left(\frac{n\pi x}{10}\right) dx = -\frac{2V}{n\pi} \cos\left(\frac{n\pi x}{10}\right)_{5-\delta}^{5+\delta}$$

Thus,

$$A_n = -\frac{10V}{n^2\pi^2} \left(\cos\left(\frac{n\pi}{2} + \frac{n\pi \delta}{10}\right) - \cos\left(\frac{n\pi}{2} - \frac{n\pi \delta}{10}\right) \right)$$

5. Problem 15 section 5.2 of Strauss.

Solution

Since $\sin(x)$ is an even function, the coefficients for the sine terms in the full Fourier series will vanish ($=0$) and we will have a pure cosine series.

6. Using parts of our discussion in class, solve the fourth order equation $u_{xxxx} = u_t$ if $u(0, t) = 0$, $u(3, t) = 0$, $u_{xx}(0, t) = 0$, and $u_{xx}(3, t) = 0$.

Solution

Using separation of variables, we have $X^{(4)} = T'' = \lambda$. We know by our work in class that since we have the above homogeneous boundary conditions, we will have eigenvalues $\lambda \geq 0$ only. So, we will check the cases $\lambda = 0$ and $\lambda > 0$. If $\lambda = 0$, we have $X(x) = ax^3 + bx^2 + cx + d$ and applying our boundary conditions we get: $d = 0$, $27a + 9b + 3c = 0$, $2b = 0$ and $18a = 0$. Thus $a = b = c = d = 0$ and we get only the trivial solution.

Now we check $\lambda = \beta^4 = 0$. Then the characteristic equation for $X^{(4)} - \beta^4 X = 0$ is $r^4 - \beta^4 = 0$. We can factor this as $(r^2 - \beta^2)^2 = 0$, so that the roots are $r = \pm \beta$, $\pm i\beta$ and $X(x) = c_1 e^\beta x + c_2 e^{-\beta x} + c_3 \cos(\beta x) + c_4 \sin(\beta x)$. Applying the first three boundary conditions we get:

$$c_1 + c_2 + c_3 = 0$$
$$c_1 e^{3\beta} + c_2 e^{-3\beta} + c_3 \cos(3\beta) + c_4 \sin(3\beta) = 0$$
$$\beta^2 (c_1 + c_2 - c_3) = 0$$

This tells us that $c_3 = 0$ and so $c_2 = -c_1$. Subbing that into the second equation gives $c_1 (e^{3\beta} - e^{-3\beta}) + c_4 \sin(3\beta) = 0$. Now applying our final condition gives $\beta^2 (c_1 e^{3\beta} - c_1 e^{-3\beta} - c_4 \sin(3\beta)) = 0$. This leads us to conclude that $c_1 = 0$ and so $c_4 \sin(3\beta) = 0$. Our only hope for a nontrivial solution is to have $3\beta = n\pi$ or $\beta = \frac{n\pi}{3}$. Thus we get infinitely many solutions for X, one for each n, and

$$X_n(x) = C_n \sin\left(\frac{n\pi x}{3}\right).$$

Now we can solve for the corresponding functions T_n with $\lambda_n = \beta^4 = \left(\frac{n\pi}{3}\right)^4$. $T'_n = \frac{n^4 \pi^4}{81} T_n$, so that $T_n = D_n e^{\frac{n^4 \pi^4}{81} t}$. Our final solution is then

$$u(x, t) = \sum_{n=1}^{\infty} A_n e^{\frac{n^4 \pi^4}{81} t} \sin\left(\frac{n\pi x}{3}\right).$$
Aside: Because our BC’s meet the symmetry condition for operator $L(u) = u_{xxxx}$ which we discussed in class, we know that if we had an initial condition, at this point we can use the Fourier series method to uniquely determine the coefficients A_n.