1. Geodesic deviation: the curvature tensor and Jacobi fields.

Let \((M, g)\) be a Riemannian manifold, \(p \in M\). Suppose we want to measure the “instantaneous spreading rate” of geodesic rays issuing from \(p\). The natural way to do this is to consider a geodesic variation:

\[
f(t, s) = \exp_p(tv(s)), \quad v(s) \in T_p M, \quad v(0) = v, v'(0) = w.
\]

Then the “spreading rate” is measured by the variation vector field \(V(t)\):

\[
V(t) = \frac{\partial f}{\partial s |_{s=0}} = d\exp_p(tv)[tw],
\]

a vector field along the geodesic \(\gamma(t) = \exp_p(tv)\). Let’s try to find a differential equation satisfied by \(V\). We have:

\[
\frac{DV}{dt} = D\frac{\partial f}{dt} = \frac{D\partial f}{ds} \frac{d\exp_p(tv)}{dt} = D\frac{D\partial f}{ds \partial t}.
\]

Setting \(W = \frac{\partial f}{dt}\) (a vector field along \(f\)), we see that \(DW/dt \equiv 0\):

\[
\frac{D}{dt}\left(\frac{\partial f}{dt}\right) = \frac{D}{dt}(d\exp_p(tv)[v(s)]) = \frac{D}{dt}\gamma_s(t) = 0,
\]

since \(\gamma_s(t) = \exp_p(tv(s))\) is a geodesic \((\gamma_s(0) = p, \dot{\gamma}_s(0) = v)\). Thus we need to compute the vector field \(X(t)\) along \(f\):

\[
X(t) := \frac{D}{dt}DW - \frac{D}{dt}DW,
\]

for then, along \(\gamma(t)\):

\[
\frac{D^2V}{dt^2} = X(t).
\]

We compute in a coordinate chart:

\[
f(s, t) = (x^i(s, t)) \in \mathbb{R}^n, \quad W(s, t) = a^i(s, t)\partial_{x^i}.
\]

Using the symmetry of the connection, we find:

\[
X = a^i \partial_{x^k} \partial_{x^j} \partial_{x^i} (\nabla_{\partial_{x^k}} \nabla_{\partial_{x^j}} \partial_{x^i} - \nabla_{\partial_{x^j}} \nabla_{\partial_{x^k}} \partial_{x^i}).
\]

We now consider the linearity over smooth functions of this commutator of covariant derivatives. We find:

\[
\nabla_{\partial_{x_k}} \nabla_{\partial_{x_j}} (f \partial_{x_i}) - \nabla_{\partial_{x_j}} \nabla_{\partial_{x_k}} (f \partial_{x_i}) = f(\nabla_{\partial_{x_k}} \nabla_{\partial_{x_j}} \partial_{x_i} - \nabla_{\partial_{x_j}} \nabla_{\partial_{x_k}} \partial_{x_i}),
\]
and, assuming we have normal coordinates at \(p \) (so \(\nabla_{\partial x_k} \partial_{x_i} = 0 \) at \(p \)):

\[
\nabla_{f\partial x_k} \nabla_{\partial x_j} \partial_{x_i} - \nabla_{\partial x_j} \nabla_{f\partial x_k} \partial_{x_i} = f(\nabla_{\partial x_k} \nabla_{\partial x_j} \partial_{x_i} - \nabla_{\partial x_j} \nabla_{\partial x_k} \partial_{x_i}).
\]

Thus, by linearity, we have:

\[
X(t) = \nabla_{\partial_t f} \nabla_{\partial_s f} W - \nabla_{\partial_s f} \nabla_{\partial_t f} W.
\]

This suggests considering, given three vector fields \(X,Y,W \), the vector field:

\[
\nabla_X \nabla_Y W - \nabla_Y \nabla_X W.
\]

A natural question is whether this is “tensorial” (linear over smooth functions) in each of \(X,Y,W \). Starting with \(W \), we find:

\[
(\nabla_X \nabla_Y - \nabla_Y \nabla_X)(fW) = f(\nabla_X \nabla_Y - \nabla_Y \nabla_X)W + [X,Y]f.
\]

This suggests subtracting the term \(\nabla_{[X,Y]}W \). Computing again:

\[
(\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]})(fW) = f(\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]})W.
\]

This motivates the definition:

Definition. The \((3,1) \)-Riemann curvature tensor \(R \) assigns to three vector fields \((X,Y,Z) \) on \(M \) the vector field:

\[
R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z.
\]

Exercise. This assignment is linear over smooth functions in each of \(X,Y \) and \(Z \).

For a vector field \(W(t,s) \) along an immersion \(f(t,s) \), we get the Ricci equation:

\[
\frac{D}{dt} \frac{D}{ds} W - \frac{D}{ds} \frac{D}{dt} W = R(\partial_t f, \partial_s f) W.
\]

Returning to the vector field \(W(t,s) = \partial_t f \) along the geodesic variation \(f(t,s) \) (where the curves \(t \mapsto f(t,s) \) are geodesics), we find:

\[
\frac{D^2 V}{dt^2} = \frac{D}{dt} \frac{D}{ds} W = R(\partial_t f, \partial_s f) \partial_t f,
\]

and at \(s = 0 \) (since \(\partial_t f|_{s=0} = \dot{\gamma} \) and \(\partial_s f|_{s=0} = V \)):

\[
\frac{D^2 V}{dt^2} + R(V, \dot{\gamma}) \dot{\gamma} = 0.
\]
This is the Jacobi equation for the “geodesic deviation” vector field $V(t)$; its solutions are Jacobi fields along $\gamma(t)$.

Remark. To find the first-order initial condition for $V(t)$, consider:

$$
\frac{DV}{dt} \mid_{t=0} = \frac{D}{dt} \frac{df}{ds} \mid_{t=0, s=0} = \frac{D}{ds} \frac{df}{dt} \mid_{t=0, s=0} = \frac{d}{ds} \gamma_s(0) = v'(0) = w.
$$

We conclude:

$J(t) = d\exp_p(tv)\{tw\}$ is the Jacobi field along $\gamma(t) = \exp_p(tv)$ with IC $J(0) = 0, \dot{J}(0) = w$.

In particular: $d\exp_p(v)\{w\} = J(1)$. This expresses the differential of the exponential map in terms of the solution of a differential equation along $\gamma(t)$.

2. The case of graphs in euclidean space. Consider the surface $M \subset \mathbb{R}^{n+1}$:

$$
M = \text{graph}(F) = \{(x, F(x)); x \in \mathbb{R}^n\}, \quad F : \mathbb{R}^n \to \mathbb{R}, \quad \nabla F(0) = 0.
$$

The induced metric and inverse metric tensors are (check!):

$$
g_{ij} = \delta_{ij} + F_i F_j, \quad g^{ij} = \delta^{ij} - \frac{F_i F_j}{1 + |\nabla F|^2}.
$$

Given the assumptions made at $x = 0$, we find:

$$
g_{ij}\mid_{l}(0) = 0 \text{ and hence } \Gamma^k_{ij}(0) = 0.
$$

For the first derivatives of the Christoffel symbols at $x = 0$:

$$
\partial_x \Gamma^k_{ij}(0) = \frac{1}{2} (g_{ik|j|m} + g_{jk|i|m} - g_{ij|k|m}),
$$

and for the curvature tensor1:

$$
R(\partial_{x_j}, \partial_{x_k})\partial_{x_l} = \nabla_{x_j} \nabla_{x_k} \partial_{x_l} - \nabla_{x_k} \nabla_{x_j} \partial_{x_l}
$$

$$
= (\Gamma^l_{ik|j} - \Gamma^l_{ij|k} + \Gamma^m_{ik} \Gamma^l_{jm} - \Gamma^m_{ij} \Gamma^l_{km}) \partial_{x_l}
$$

$$
:= R^l_{ijk} \partial_{x_l}.
$$

1Note here we’re using the notation R for what is in fact the pull-back $\varphi^* R$ of the (3,1) curvature tensor under the graph chart $\varphi(x) = (x, F(x))$.
Thus at $x = 0$ we have:

$$R^l_{jki}(0) = \Gamma^l_{ikj} - \Gamma^l_{ijk}$$

Suppose we choose the axes so that the Hessian of F is diagonal at $x = 0$:

$$Hess(F)|_0 = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad F_{ij}(0) = \lambda_i \delta_{ij} \quad \text{(no sum)}.$$

Then, since $g_{ij|kl}(0) = F_{ik}F_{jl}(0) + F_{il}F_{jk}(0) = \lambda_i \lambda_j (\delta_{ik}\delta_{jl} + \delta_{jk}\delta_{il})$, the only non-zero second derivatives of the metric at $x = 0$ are:

$$g_{ii|i} = 2\lambda_i^2, \quad g_{ij|ij} = g_{ij|ji} = \lambda_i \lambda_j \quad (i \neq j).$$

(in particular, $g_{ij|jj} = 0$ for $i \neq j$.) Thus the only potentially non-vanishing first-order derivatives of Christoffel symbols (at $x = 0$) have either all four indices equal, or two pairs of equal indices:

$$\Gamma^i_{ii|i} = \lambda_i^2,$n

$$\Gamma^i_{ij|j} = \frac{1}{2} (g_{ii|jj} + g_{ij|ij} - g_{ij|ij}) = 0 \quad (i \neq j),$$

$$\Gamma^j_{ij|i} = \frac{1}{2} (g_{ij|ii} + g_{ij|ij} - g_{ij|ij}) = \lambda_i \lambda_j \quad (i \neq j).$$

We conclude:

$$\Gamma^l_{ik|j} = \lambda_i \lambda_j \delta_{ik}\delta_{lj},$$

and for the components of the curvature tensor at $x = 0$:

$$R^l_{jki} = \Gamma^l_{ikj} - \Gamma^l_{ijk} = \lambda_j \lambda_k (\delta_{ik}\delta_{lj} - \delta_{ij}\delta_{lk}) \quad \text{(no sum)}.$$

For the components of the $(4,0)$-curvature tensor:

$$R_{jkim} := \langle R(\partial_{x_j}, \partial_{x_k})\partial_{x_i}, \partial_{x_m} \rangle,$$

using the fact that $g_{ij}(0) = \delta_{ij}$ we find, at $x = 0$:

$$R_{jkim} = \lambda_j \lambda_k (\delta_{ik}\delta_{jm} - \delta_{ij}\delta_{km})$$

$$= D^2F(\partial_{x_i}, \partial_{x_k})D^2F(\partial_{x_j}, \partial_{x_m}) - D^2F(\partial_{x_i}, \partial_{x_j})D^2F(\partial_{x_k}, \partial_{x_m}),$$

where D^2F is the Hessian quadratic form of F.

4
By linearity, we have for arbitrary vector fields X,Y,Z,W on \mathbb{R}^n, and at $x = 0$:

$$
\langle (\varphi^* R)(X,Y)Z,W \rangle_g = D^2 F(Z,Y)D^2 F(X,W) - D^2 F(Z,X)D^2 F(Y,W).
$$

Since both sides of this equation are “tensorial” (4-linear over functions), it in fact holds everywhere, and expresses the $(4,0)$ curvature tensor in terms of the Hessian of F.

Kulkarni-Nomizu product. Given two quadratic forms Q, \bar{Q} (i.e., symmetric bilinear forms) in a vector space E, their Kulkarni-Nomizu product is the 4-linear form on E:

$$(Q \odot \bar{Q})(x,y,z,w) := \frac{1}{2} [Q(x,z)\bar{Q}(y,w) - Q(y,z)\bar{Q}(x,w) + \bar{Q}(x,z)Q(y,w) - \bar{Q}(y,z)Q(x,w)].$$

Exercise. (i) $Q \odot \bar{Q}$ has the same algebraic symmetries as the $(4,0)$-Riemann curvature tensor, except for the first Bianchi identity: it is skew-symmetric in (x,y), skew-symmetric in (z,w) and symmetric under swapping the ordered pairs (x,y) and (z,w). Thus $Q \odot \bar{Q}$ is a quadratic form in the space of alternating 2-vectors $\Lambda_2(E)$.

(ii) If $Q = \bar{Q}$, the 4-linear form $\omega = Q \odot Q$ also satisfies the algebraic Bianchi identity:

$$
\omega(x,y,z,w) + \omega(y,x,z,w) + \omega(z,y,x,w) = 0.
$$

In terms of the K-N product, the $(4,0)$-Riemann curvature tensor $Riem$ of a graph has the expression:

$$
Riem = -(D^2 F \circ D\pi) \odot (D^2 F \circ D\pi),
$$

where $D\pi(p) : T_pM \rightarrow \mathbb{R}^n$ is the inverse of the differential graph chart $D\varphi$, and

$$(D^2 F \circ D\pi)(X,Y) := D^2 F(D\pi[X],D\pi[Y]), \quad X,Y \in T_pM$$

Recall that if E has an inner product, there is an associated inner product in $\Lambda_2(E)$ uniquely determined by:

$$
\langle x \wedge y, z \wedge w \rangle = \langle x, z \rangle \langle y, w \rangle - \langle y, z \rangle \langle x, w \rangle
$$

2Here we revert to more precise notation: $\varphi^* R$ is a $(3,1)$ tensor on \mathbb{R}^n, the pullback of the curvature tensor under the graph chart φ.

5
(which itself has the structure of a K-N product!) Note, in particular:

\[|x \wedge y|^2 = |x|^2|y|^2 - \langle x, y \rangle^2. \]

Thus, given a quadratic form on \(\Lambda_2(E) \) we have an associated symmetric linear operator from \(\Lambda_2(E) \) to \(\Lambda_2(E) \). In the case of the \((4,0)\)-Riemann curvature tensor \(\text{Riem} \), the associated symmetric linear operator (at each \(p \in M \))

\[\mathcal{R}_p : \Lambda_2(T_pM) \to \Lambda_2(T_pM) \]

is known as the curvature operator, and has found important applications in recent years.

The two-dimensional case. If \(n = 2 \), the only non-zero components of \(\text{Riem} \) (at \(p \in M \)) have the form \(\langle R(X,Y)X,Y \rangle \), with \(X,Y \) linearly independent (in \(T_pM \)). If \(M \) is the graph of \(F \):

\[\langle R(X,Y)X,Y \rangle = -(D^2F \circ D^2F)(D\pi X, D\pi Y, D\pi X, D\pi Y). \]

If the \(\{e_1, e_2\} \) is an orthonormal basis of \((\mathbb{R}^n, g)\) diagonalizing \(D^2F \) with eigenvalues \(\lambda_1, \lambda_2 \), we find:

\[(D^2F \circ D^2F)(e_1, e_2, e_1, e_2) = D^2F(e_1, e_1)D^2F(e_2, e_2) - (D^2F(e_1, e_2))^2 = \lambda_1\lambda_2. \]

This motivates the definition, for general dimensions \(n \) (changing the order of the second pair \(X,Y \) to get rid of the sign):

\[\text{Definition.} \quad \text{Let} \ v, w \in T_pM \text{ be linearly independent. The sectional curvature of } M \text{ along the 2-dimensional subspace } E \subset T_pM \text{ spanned by } v \text{ and } w \text{ is the real number } \sigma_E(p) \text{ defined by:} \\
\[\langle R(X,Y)X,Y \rangle(p) = \sigma_E(p)|v \wedge w|_{g_p}^2, \]

where \(X, Y \) are vector fields on \(M \) with \(X(p) = v, Y(p) = w \) and \(|v \wedge w|_{g_p}^2 = |v|_{g_p}^2|w|_{g_p}^2 - \langle v, w \rangle_{g_p}^2 \).

\[\text{Exercise.} \quad \sigma_E(p) \text{ depends only on the two-dimensional subspace } E, \text{ not on the choice of basis.} \]

Thus, in the two-dimensional case (for the graph of a function \(F \)), the sectional curvature \(\sigma \) is the product of the eigenvalues of the Hessian \(D^2F \) (\(\sigma = \lambda_1\lambda_2 \)), and explicitly determines the \((4,0)\)-Riemann curvature tensor, via:

\[\langle R(X,Y)Z,W \rangle = -\sigma(\langle X,Z \rangle \langle Y,W \rangle - \langle Y,Z \rangle \langle X,W \rangle) = -\sigma \langle X \wedge Y, Z \wedge W \rangle. \]
It also follows that:

\[\sigma > 0 \Leftrightarrow \lambda_1, \lambda_2 \text{ have the same sign}. \]

3. Hypersurfaces in euclidean space. Let \(M^n \subset \mathbb{R}^{n+1} \) be a sub-manifold. Given \(p \in M \), we define a local graph chart at \(p \), \(\varphi : U \to M \), \(U \subset \mathbb{R}^n \) open, via:

\[\varphi(x) = (x, F(x)) \in U \times \mathbb{R}, \quad F : U \to \mathbb{R} \text{ smooth}, \quad (0, F(0)) = p, \nabla F(0) = 0. \]

The “upward” unit normal in a neighborhood of \(p \) is given in this chart by the map:

\[N : U \to \mathbb{R}^{n+1}, \quad N(x) = \frac{(-\nabla F(x), 1)}{\sqrt{1 + |\nabla F(x)|^2}}. \]

Thus if \(\hat{N} : M \to S^n \) denotes the Gauss map of \(M \), we have:

\[\hat{N}(\varphi(x)) = N(x), \quad x \in U. \]

Vector fields \(X, Y \) in \(U \) correspond via \(\varphi \) to tangent vector fields \(\bar{X}, \bar{Y} \in \chi_M \):

\[\bar{X} = D\varphi[X] = (X, \nabla F \cdot X), \quad \bar{Y} = D\varphi[Y] = (Y, \nabla F \cdot Y). \]

By direct computation at \(x = 0 \), we find:

\[\langle D\hat{N}(0)[\bar{X}], \bar{Y} \rangle = -D^2 F(0)(X, Y). \]

And the chain rule gives: \(D\hat{N}(p)[\bar{X}] = D\hat{N}(p)D\varphi(0)[X] = DN(0)[X] \), so we find for the differential of the Gauss map:

\[\langle D\hat{N}(p)[\bar{X}], \bar{Y} \rangle = -D^2 F(0)(X, Y) = -D^2 F(0)(D\pi(p)[\bar{X}], D\pi(p)[\bar{Y}]), \]

where \(D\pi(p) : T_p M \to \mathbb{R}^n, D\pi(p)[\bar{X}] = X \) if \(\bar{X} = (X, \nabla F \cdot X) \).

Note that since the last equality is “tensorial” (bilinear in \(\bar{X}, \bar{Y} \) over smooth functions), it in fact holds at all points of \(M \). In addition, it shows that the left-hand side is symmetric in \((\bar{X}, \bar{Y}) \) (since the right-hand side is). This leads to the important definition of the second fundamental form (of \(M \) in \(\mathbb{R}^{n+1} \)), the quadratic form on \(TM \) given in terms of the Gauss map \(\hat{N} \) by:

\[A(\bar{X}, \bar{Y}) := -\langle D\hat{N}[\bar{X}], \bar{Y} \rangle. \]
Remarks. (i) The “first fundamental form” is the induced metric. (ii) The purpose of the negative sign is to make the sectional curvature of the graph of a convex function positive (see below).

Above we established that, for a graph:

\[A(\bar{X}, \bar{Y}) = D^2 F(D\pi[\bar{X}], D\pi[\bar{Y}]), \]

where \(D\pi \) is the inverse differential of the graph chart, \(D\phi \). Thus we have, for the (4,0)-curvature tensor of a hypersurface in \(\mathbb{R}^{n+1} \) the beautiful relation:

\[Riem = -A \odot A. \]

To make this more concrete, consider a two-dimensional subspace \(E \subset T_pM \) which is invariant under the second fundamental form. This means \(S_p(E) \subset E \), where \(S_p : T_pM \to T_pM \) is the self-adjoint operator (with respect to the induced metric at \(p \in M \)) associated with \(A_p \). (Note \(S_p = -D\hat{N}(p) \)). Let \(\{e_1, e_2\} \) be an orthonormal basis of \(E \) diagonalizing the restriction \(S_p|_E \), with \(S_p(e_i) = \lambda_i e_i \) for \(i = 1, 2 \). We have for the sectional curvature of \(E \):

\[
\sigma_E = \langle R_p(e_1, e_2)e_2, e_1 \rangle = A_p \odot A_p(e_1, e_2, e_1, e_2) \\
= A_p(e_1, e_1)A_p(e_2, e_2) - (A_p(e_1, e_2))^2 = \lambda_1 \lambda_2 = \det(S_p|_E).
\]

This is an important conclusion: if \(E \) is a two-dimensional subspace of \(T_pM \) invariant under the “shape operator” \(S_p = -D\hat{N}(p) \) at a point \(p \in M \), the sectional curvature at \(p \) along \(E \) (which depends only on the first fundamental form and its derivatives up to second order) equals the determinant of the restriction of the shape operator to \(E \) (which seems to depend on the second fundamental form, or on the unit normal and its first derivative).

In two dimensions, the “invariance” condition is unnecessary. The eigenvalues of \(S_p \) are the “principal curvatures” at \(p \in M \), and their product is the Gauss curvature \(K = \lambda_1 \lambda_2 \) at \(p \). We conclude:

Gauss’s Teorema Egregium: \(\sigma = K. \)

The fact that the sectional curvature equals the Gauss curvature is surprising since \(\sigma \) depends only on the induced metric (tangential information), while \(K \) seems to depend on the embedding of the surface in \(\mathbb{R}^3 \) (specifically, on how the unit normal “turns” near \(p \)).
Recall also that in two dimensions the Gauss curvature of a hypersurface equals the Jacobian of the Gauss map, so we have:
\[\sigma(p) = K(p) = \det D\hat{N}(p), \quad p \in M. \]

4. The differential Bianchi identity.

Theorem. The \((3,1)\) curvature tensor satisfies:

Proof. We compute in a geodesic frame at \(P\), so that \(\nabla_X Y(p) = 0\) for all vector fields \(X, Y\). Then the left-hand side is, at \(p\) (using \([X, Y](p) = 0\)):
\[
\]
\[
= ([\nabla_X, [\nabla_Y, \nabla_Z]](W) + [\nabla_Y, [\nabla_Z, \nabla_X]](W) + [\nabla_Z, [\nabla_X, \nabla_Y]](W),
\]
and the fact this vanishes follows from the Jacobi identity for commutators of linear operators.

An important corollary is the \textit{contracted Bianchi identity}, which is useful in General Relativity. It states:
\[
\text{div}(\text{Ric}) - \frac{1}{2} \nabla S = 0,
\]
where \(\text{Ric}\) and \(S\) are the \((1,1)\) Ricci tensor and the scalar curvature, and \(\text{div}(\text{Ric}) = \sum_i \nabla_{e_i}(\text{Ric})(e_i)\).

To see this, compute in an orthonormal frame which is geodesic at \(p\) (so \(\nabla_{e_i} e_j(p) = 0\)). Then at \(p\):
\[
\langle \text{div}(\text{Ric}), X \rangle = \sum_i \langle (\nabla_{e_i} \text{Ric})e_j, X \rangle = \sum_{i,j} \langle (\nabla_{e_j} R)(e_j, e_i)e_i, X \rangle = \sum_{i,j} \langle (\nabla_{e_j} R)(e_i, X)e_j, e_i \rangle
\]
\[
= \sum_{i,j} [-(\nabla_{e_i} R)(X, e_j)e_j, e_i) - \langle (\nabla_X R)(e_j, e_i)e_j, e_i \rangle]
\]
(from the differential Bianchi identity just proved)
\[
= -\sum_j \langle (\nabla_{e_j} \text{Ric})(X), e_j \rangle - X(S) = -\langle \text{div}(\text{Ric}), X \rangle - X(S),
\]
proving the claim.

5. The Gauss and Codazzi equations for hypersurfaces.

Let $M \subset \bar{M}$ be a hypersurface (codimension 1-submanifold) with the Riemannian metric induced from \bar{M}. For vector fields $X \in \chi_M, Y \in \bar{\chi}_M$ (the space of vector fields on \bar{M} restricted to M) we have the tangent-normal decomposition (with respect to a unit normal vector $N \in \bar{\chi}_M$):

$$\nabla_X Y = \nabla_X Y + A(X, Y)N,$$

where A is the second fundamental form (recall $A(X, Y) = -\langle \bar{\nabla}_X N, Y \rangle$). Iterating this formula, we find:

$$\bar{\nabla}_X \bar{\nabla}_Y Z = \bar{\nabla}_X (\bar{\nabla}_Y Z + A(Y, Z)N) = \bar{\nabla}_X \bar{\nabla}_Y Z + X(A(Y, Z))N + A(Y, Z)\bar{\nabla}_X N.$$

Skew-symmetrising and taking tangential components (using $[X,Y](p) = 0$, for a frame geodesic at p):

$$\left[[\bar{R}(X,Y)Z\right]_{tan} = \bar{R}(X,Y)Z + A(Y,Z)\langle \bar{\nabla}_X N, W \rangle - A(X,Z)\langle \bar{\nabla}_Y N, W \rangle.$$

Taking inner product with $W \in \chi_M$, we find for the $(4,0)$ Riemann tensors:

$$\langle \bar{R}(X,Y)Z, W \rangle = \langle R(X,Y)Z, W \rangle + A(Y, Z)\langle \bar{\nabla}_X N, W \rangle - A(X,Z)\langle \bar{\nabla}_Y N, W \rangle$$

Using the Kulkarni-Nomizu product, we obtain for the $(4,0)$ curvature tensor of M and \bar{M} the relation:

$$\bar{Riem} = Riem + A \odot A.$$

This immediately implies, for the sectional curvatures along the 2-plane $span\{X,Y\}$:

$$\sigma_{XY} = \sigma_{XY} - A(X, X)A(Y, Y) + A(X, Y)^2 \quad \{X, Y\} \text{ orthonormal}$$

This is the general *Gauss equation* for hypersurfaces in a Riemannian manifold. On the other hand, taking inner product of the first relation above with the unit normal N:

This is the *Codazzi equation*. In terms of the shape operator:

$$(\nabla_X S)Y - (\nabla_Y S)X = -\bar{R}(X,Y)N.$$

In particular, $\langle (\nabla_X S)Y - (\nabla_Y S)X = 0$ if \bar{M} is flat (or, more generally, of constant curvature.)