MATH 447, FALL 2016–Second Problem Set.

1. [F, p. 50] \(U \subset \mathbb{R}^m \) open, \(f : U \rightarrow \mathbb{R}^n \) function, \(x_0 \in U \). Show that \(f \) is continuous at \(x_0 \) if, and only if, for any sequence \((x_n)_{n \geq 1} \) in \(U \) we have:
\[
\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0).
\]

2. [F p. 62] Show that any closed subset of a compact topological space is compact.

7. Compactness implies the Finite Intersection Property. (In fact they are equivalent.)

4. (i) \(f : \mathbb{R} \rightarrow \mathbb{R}, f(x) = x^2 \) is not uniformly continuous on \(\mathbb{R} \) (in particular, not Lipschitz on \(\mathbb{R} \)); but \(f \) is locally Lipschitz on \(\mathbb{R} \).
(ii) \(f : (0, 1] \rightarrow \mathbb{R} \) given by \(f(x) = \sqrt{x} \) is locally Lipschitz.
(iii) \(f : [0, 1] \rightarrow \mathbb{R} \) given by \(f(x) = \sqrt{x} \) is not locally Lipschitz (in particular, not Lipschitz in \([0, 1] \)).
(iv) \(f : \mathbb{R}_+ \rightarrow \mathbb{R} \) given by \(f(x) = \sqrt{x} \) is Hölder in \(\mathbb{R}_+ \), with exponent 1/2.

5. If \(f : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is continuous and \(X \subset \mathbb{R}^m \) is bounded, the restriction \(f|_X : X \rightarrow \mathbb{R}^m \) is uniformly continuous.

6. The function \(f : \mathbb{R}^2 \rightarrow \mathbb{R}, f(x, y) = xy \) is not uniformly continuous. (Hint: Consider the sequences \(z_k = (k, 1/k) \) and \(w_k = (k, 0) \) in \(\mathbb{R}^2 \).)

7. The orthogonal \(n \times n \) matrices define a compact subset of \(\mathbb{R}^{n^2} \). (Recall an \(n \times n \) matrix \(A \) is orthogonal if \(A^T A = I_n \), where \(T \) denotes ‘transpose’ and \(I_n \) is the \(n \times n \) identity matrix.)

8. Let \(X \subset \mathbb{R}^{n+1} \setminus \{0\} \) a compact set continuing exactly one point on each half-line from \(0 \in \mathbb{R}^{n+1} \). Show that \(X \) is homeomorphic to the unit sphere \(S^n \).

9. Let \(f : \mathbb{R}^m \subset \mathbb{R}^n \) be continuous. The following are equivalent:
 (i) \(\lim_{x \to \infty} f(x) = \infty \).
 (ii) For each compact subset \(K \subset \mathbb{R}^n \), we have that \(f^{-1}(K) \) is compact in \(\mathbb{R}^m \).
 (Such maps \(f \) are called proper.) If \(f : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is proper and \(F \subset \mathbb{R}^m \) is closed, then \(f(F) \subset \mathbb{R}^n \) is also closed.

10. Any locally Lipschitz map \(f : K \rightarrow \mathbb{R}^n \) defined on a compact set \(K \subset \mathbb{R}^m \) is Lipschitz.