Qualitative analysis of autonomous 2D systems.

1. Phase-plane analysis. Analyze the following systems by linearization at the critical points, including the items below.

SYSTEMS
1. \(x' = x + x^2, \ y' = x + y^2 \).
2. \(x' = x + y - y^2, \ y' = -x + y - 2y^2 \)
3. \(x' = x - x^2 - 2xy, \ y' = y - y^2 - 2xy \)
4. \(x' = x(1 - y), \ y' = y(1 - x) \)

OUTLINE:
(a) Find the critical points, and classify the linearized system at each critical point.
(b) If there are saddles, compute the stable/unstable eigenspaces at each saddle (these will be tangent to the stable/unstable separatrices.)
(c) Find the \(\alpha \) and \(\omega \) limits of each saddle separatrix (when they exist.)
(d) Identify other invariant sets: basins of attractors and sources, other open sets, possibly the coordinate axes.
(e) Identify finite (or half-finite) intervals of existence, when possible
(f) Include a MATLAB plot (with saddle separatrices and basins of attractors/sources highlighted) including at least two typical trajectories for each possible asymptotic behavior as \(t \to \pm \infty \).

EXAMPLE (seen in class)
\(x' = x(3 - x - y), \ y' = y(x - y - 1) \).

(a) Critical points: \(O=(0,0) \) (saddle); \(P=(3,0) \) (saddle), \(Q=(0,-1) \) (unstable node), \(R=(2,1) \) (stable spiral)
(b) \(E^s(O) = \{c(0,1)\}, \ E^u(O) = \{c(1,0)\}, \ E^s(P) = \{c(1,0)\}, \ E^u(P) = \{c(3,-5)\} \)
(c) One arc of \(W^s(O) \) has \(\alpha \)-limit, the other diverges; one arc of \(W^u(O) \) has \(P \) as \(\omega \)-limit, the other diverges.
 One arc of \(W^s(P) \) has \(O \) as \(\alpha \)-limit, the other diverges; one arc of \(W^u(P) \) has \(R \) as \(\omega \)-limit, the other diverges (it is the boundary of the basin of \(Q \).
 The coordinate axes are invariant, since \(x = 0 \) implies \(x' = 0 \) and \(y = 0 \) implies \(y' = 0 \).
 The open first quadrant is the basin of attraction \(W^s(R) \) of the sink (attractor) \(R \); the region in the open lower half-plane bounded by one arc of \(W^u(P) \) is the basin \(W^u(Q) \) of the source (repellor) \(Q \).
(e) Solutions with IC in $W^u(Q)$ or in the unstable separatrices of saddles are defined for all negative time, solutions with IC in $W^s(R)$ or the stable separatrices of saddles are defined for all positive time. In particular, one arc of $W^u(P)$ corresponds to a solution defined for all $t \in \mathbb{R}$.

2. Gradient systems.
 For each of the following functions $F(x,y)$, sketch the phase portrait (along the lines of problem 1, with the help of Matlab) for the gradient system $v' = -\text{grad} \, F(v)$.
 (a) $F(x,y) = y \sin x$.
 (b) $F(x,y) = x^2 - y^2 - 2x + 4y + 5$

3. Lotka-Volterra competition. Sketch the phase portraits (along the lines of problem 1, with the help of Matlab) for three numerical examples of Lotka-Volterra systems, one in each of the three cases:
 (i) weak competition: $\lambda_1 < \frac{k_1}{k_2} < \frac{1}{\lambda_2}$.
 (ii) strong competition: $\lambda_1 > \frac{k_1}{k_2} > \frac{1}{\lambda_2}$.
 (iii) intermediate: $\lambda_1 < \frac{k_1}{k_2} < \lambda_2$

4. Lienard’s theorem.
 Show that the second-order scalar equation $x'' + (x^6 - x^2)x' + x = 0$, $x = x(t)$, admits a non-constant periodic solution.

THEORY QUESTIONS. (Not due as homework.)
I: A gradient system cannot have non-constant periodic solutions.
II: If an autonomous system in the plane admits a conserved quantity $E(x,y)$, and E is not constant on any open subset of the plane, then the system cannot have a limit cycle.