Quasi-local mass, static vacuum metrics, and fill-ins of nonnegative scalar curvature

Jeff Jauregui

University of Pennsylvania

41st Barrett Memorial Lectures

UTK

5/14/2011
Quasi-local mass

Consider a spacetime:

\[(M^3, g) \]

... with spacelike slice \((M, g)\) that is totally geodesic
Quasi-local mass

Consider a spacetime:

... with spacelike slice \((M^3, g)\) that is totally geodesic

How much mass is contained in bounded region \(\Omega\)?
Quasi-local mass

Consider a spacetime:

\[(M^3,g) \text{ is totally geodesic} \]

How much \textit{mass} is contained in bounded region \(\Omega \)?

- Scalar curvature \(R \) of \(g \) is observed energy density \(\geq 0 \)
Quasi-local mass

Consider a spacetime:

\[(M^3, g) \]

with spacelike slice \((M, g) \) that is totally geodesic

How much mass is contained in bounded region \(\Omega \)?

- Scalar curvature \(R \) of \(g \) is observed energy density \((\geq 0)\)
- \(\Omega \) may contain horizons (outermost minimal surfaces)
Bartnik data

- “Quasi-local mass” of Ω ought to depend only on geometry near $\partial \Omega$: in particular the Bartnik data (Σ, γ, H)
Bartnik data

• “Quasi-local mass” of Ω ought to depend only on geometry near $\partial \Omega$: in particular the Bartnik data (Σ, γ, H)
 • $\Sigma = \partial \Omega$ (a closed 2-surface)
Bartnik data

• “Quasi-local mass” of Ω ought to depend only on geometry near $\partial \Omega$: in particular the Bartnik data (Σ, γ, H)
 • $\Sigma = \partial \Omega$ (a closed 2-surface)
 • $\gamma = g|_{\Sigma}$ (induced metric on Σ)
Bartnik data

• “Quasi-local mass” of Ω ought to depend only on geometry near $\partial \Omega$: in particular the *Bartnik data* (Σ, γ, H)
 - $\Sigma = \partial \Omega$ (a closed 2-surface)
 - $\gamma = g|_\Sigma$ (induced metric on Σ)
 - $H = \text{mean curvature of } \Sigma \text{ in } \Omega$ (in outward direction)
“Quasi-local mass” of Ω ought to depend only on geometry near $\partial \Omega$: in particular the Bartnik data (Σ, γ, H)

- $\Sigma = \partial \Omega$ (a closed 2-surface)
- $\gamma = g|_{\Sigma}$ (induced metric on Σ)
- $H =$ mean curvature of Σ in Ω (in outward direction)

We assume:
- $\Sigma \cong S^2$
- γ has positive Gauss curvature: $K_{\gamma} > 0$
- $H > 0$
Examples of quasi-local mass

1. Hawking mass:

\[m_H(\Sigma, \gamma, H) = \sqrt{\frac{\text{area}_\gamma(\Sigma)}{16\pi}} \left(1 - \frac{1}{16\pi} \int_{\Sigma} H^2 dA_\gamma \right) \]
Examples of quasi-local mass

1. Hawking mass:

\[m_H(\Sigma, \gamma, H) = \sqrt{\frac{\text{area}\gamma(\Sigma)}{16\pi}} \left(1 - \frac{1}{16\pi} \int_{\Sigma} H^2 dA_\gamma \right) \]

2. Brown–York mass:

\[m_{BY}(\Sigma, \gamma, H) = \frac{1}{8\pi} \int_{\Sigma} (H_0 - H) dA, \]

where \(H_0 \) is mean curvature of embedding \((\Sigma, \gamma) \hookrightarrow \mathbb{R}^3\).
Examples of quasi-local mass

1. Hawking mass:

\[m_H(\Sigma, \gamma, H) = \sqrt{\frac{\text{area}_\gamma(\Sigma)}{16\pi}} \left(1 - \frac{1}{16\pi} \int_\Sigma H^2 dA_\gamma \right) \]

2. Brown–York mass:

\[m_{BY}(\Sigma, \gamma, H) = \frac{1}{8\pi} \int_\Sigma (H_0 - H) dA, \]

where \(H_0 \) is mean curvature of embedding \((\Sigma, \gamma) \hookrightarrow \mathbb{R}^3\).

3. Bartnik mass:

\[m_B(\Sigma, \gamma, H) = \inf\{ m_{ADM}(M, g) \}, \]

where \((M, g)\) is an asymptotically flat extension of \((\Sigma, \gamma, H)\) with \(R \geq 0 \), no horizons.
Test case 1: round sphere in \mathbb{R}^3
Test case 1: round sphere in \mathbb{R}^3

Euclidean space

- $m_H(\Sigma) = 0$
- $m_{BY}(\Sigma) = 0$
- $m_B(\Sigma) = 0$
Schwarzschild metric, $m > 0$

$$g_{ij} = \left(1 + \frac{m}{2r}\right)^4 \delta_{ij}$$

apparent horizon of black hole
Test case 2

Schwarzschild metric, $m > 0$

$$g_{ij} = \left(1 + \frac{m}{2r}\right)^4 \delta_{ij}$$

- $m_H(\Sigma) = m$
- $m_{BY}(\Sigma) > m$
- $m_B(\Sigma) = m$
Test case 3

Schwarzschild metric, $m > 0$

$$g_{ij} = \left(1 + \frac{m}{2r} \right)^4 \delta_{ij}$$

(Σ, γ, H)
Test case 3

Schwarzschild metric, $m > 0$

$$g_{ij} = \left(1 + \frac{m}{2r}\right)^4 \delta_{ij}$$

- $m_H(\Sigma) > 0$
- $m_{BY}(\Sigma) > 0$
- $m_B(\Sigma) > 0$
Fill-ins

Motivation:

• Find a quasi-local mass that vanishes in previous example.
Motivation:

- Find a quasi-local mass that vanishes in previous example.
- How to recognize this based on Bartnik data?
Fill-ins

Motivation:

- Find a quasi-local mass that vanishes in previous example.
- How to recognize this based on Bartnik data?

Key idea: (non-)existence of fill-ins

- Does given data \((\Sigma, \gamma, H)\) have a \textit{fill-in}?
Motivation:

- Find a quasi-local mass that vanishes in previous example.
- How to recognize this based on Bartnik data?

Key idea: (non-)existence of fill-ins

- Does given data \((\Sigma, \gamma, H)\) have a fill-in?
Motivation:

- Find a quasi-local mass that vanishes in previous example.
- How to recognize this based on Bartnik data?

Key idea: (non-)existence of fill-ins

- Does given data \((\Sigma, \gamma, H)\) have a fill-in?

(fill-in without black holes)
Motivation:
- Find a quasi-local mass that vanishes in previous example.
- How to recognize this based on Bartnik data?

Key idea: (non-)existence of fill-ins
- Does given data \((\Sigma, \gamma, H)\) have a fill-in?

(fill-in without black holes)\[(\Omega^3, g) \quad \overset{R \geq 0}{\longrightarrow} \]

(fill-in with black holes)\[(\Sigma^2, \gamma, H) \quad \overset{R \geq 0}{\longrightarrow} \]
Trichotomy

Bartnik data \((\Sigma, \gamma, H)\) falls into one of three classes:

- **negative type**: no fill-in exists
- **zero type**: a fill-in exists, but only without black holes
- **positive type**: a fill-in exists, with black holes

Examples

- **negative type**: concentric sphere in Schwarzschild (uses positive mass theorem)
- **zero type**: off-center sphere in Schwarzschild (uses Riemannian Penrose inequality)
- **positive type**: concentric sphere in Schwarzschild
Trichotomy

Bartnik data \((\Sigma, \gamma, H)\) falls into one of three classes:

- **negative type**: no fill-in exists
- **zero type**: a fill-in exists, but only without black holes
- **positive type**: a fill-in exists, with black holes

Examples

- **negative type**: concentric sphere in \(m < 0\) Schwarzschild
 - uses positive mass theorem with corners (Miao)
- **zero type**: off-center sphere in \(m > 0\) Schwarzschild
 - uses Riemannian Penrose inequality (Bray)
- **positive type**: concentric sphere in \(m > 0\) Schwarzschild
Trichotomy

Bartnik data \((\Sigma, \gamma, H)\) falls into one of three classes:

- negative type: no fill-in exists
- zero type: a fill-in exists, but only \textit{without} black holes

Examples

- **negative type**: concentric sphere in \(m < 0\) Schwarzschild uses positive mass theorem with corners (Miao)
- **zero type**: off-center sphere in \(m > 0\) Schwarzschild uses Riemannian Penrose inequality (Bray)
- **positive type**: concentric sphere in \(m > 0\) Schwarzschild
Trichotomy

Bartnik data (Σ, γ, H) falls into one of three classes:

- negative type: no fill-in exists
- zero type: a fill-in exists, but only *without* black holes
- positive type: a fill-in exists, with black holes

Examples

- negative type: concentric sphere in $m < 0$ Schwarzschild
 uses positive mass theorem with corners (Miao)

- zero type: off-center sphere in $m > 0$ Schwarzschild
 uses Riemannian Penrose inequality (Bray)

- positive type: concentric sphere in $m > 0$ Schwarzschild
Trichotomy

Bartnik data \((\Sigma, \gamma, H)\) falls into one of three classes:

- negative type: no fill-in exists
- zero type: a fill-in exists, but only \emph{without} black holes
- positive type: a fill-in exists, with black holes

Examples

- negative type: concentric sphere in \(m < 0\) Schwarzschild
 - uses positive mass theorem \emph{with corners} (Miao)
Trichotomy

Bartnik data \((\Sigma, \gamma, H)\) falls into one of three classes:

- negative type: no fill-in exists
- zero type: a fill-in exists, but only \textit{without} black holes
- positive type: a fill-in exists, with black holes

Examples

- negative type: concentric sphere in \(m < 0\) Schwarzschild
 - uses positive mass theorem \textit{with corners} (Miao)
- zero type: off-center sphere in \(m > 0\) Schwarzschild
 - uses Riemannian Penrose inequality (Bray)
Trichotomy

Bartnik data \((\Sigma, \gamma, H)\) falls into one of three classes:

- **negative type**: no fill-in exists
- **zero type**: a fill-in exists, but only *without* black holes
- **positive type**: a fill-in exists, with black holes

Examples

- **negative type**: concentric sphere in \(m < 0\) Schwarzschild
 - uses positive mass theorem *with corners* (Miao)
- **zero type**: off-center sphere in \(m > 0\) Schwarzschild
 - uses Riemannian Penrose inequality (Bray)
- **positive type**: concentric sphere in \(m > 0\) Schwarzschild
Characterization of type zero

Proposition

Every fill-in \((\Omega, g)\) of type zero data is \textbf{static vacuum}, meaning

\[\text{Ric}(-u(x)^2 \, dt^2 + g) = 0 \]

for some function \(u > 0\) on \(\Omega\). (Implies \(g\) has zero scalar curvature.)
Characterization of type zero

Proposition

Every fill-in \((\Omega, g)\) of type zero data is **static vacuum**, meaning

\[
\text{Ric}(-u(x)^2 dt^2 + g) = 0
\]

for some function \(u > 0\) on \(\Omega\). (Implies \(g\) has zero scalar curvature.)

Proof

- Take some fill-in \((\Omega, g)\), assume **not** static vacuum.
Characterization of type zero

Proposition
Every fill-in \((\Omega, g)\) of type zero data is static vacuum, meaning
\[
\text{Ric}(\!-u(x)^2 dt^2 + g) = 0
\]
for some function \(u > 0\) on \(\Omega\). (Implies \(g\) has zero scalar curvature.)

Proof
- Take some fill-in \((\Omega, g)\), assume not static vacuum.
- Corvino: locally increase scalar curvature away from boundary.
Characterization of type zero

Proposition
Every fill-in \((\Omega, g)\) of type zero data is static vacuum, meaning
\[
\text{Ric}(-u(x)^2 dt^2 + g) = 0
\]
for some function \(u > 0\) on \(\Omega\). (Implies \(g\) has zero scalar curvature.)

Proof

- Take some fill-in \((\Omega, g)\), assume not static vacuum.
- Corvino: locally increase scalar curvature away from boundary.
- Introduce a small black hole in region with positive scalar curvature.
Characterization of type zero

Proposition
Every fill-in (Ω, g) of type zero data is static vacuum, meaning

$$\text{Ric}(-u(x)^2 dt^2 + g) = 0$$

for some function $u > 0$ on Ω. (Implies g has zero scalar curvature.)

Proof

- Take some fill-in (Ω, g), assume not static vacuum.
- Corvino: locally increase scalar curvature away from boundary.
- Introduce a small black hole in region with positive scalar curvature.
- Conclude data is of positive type.
Shi–Tam Theorem

Theorem (Shi–Tam, 2002)

If \((\Sigma, \gamma, H)\) has a fill-in, then

\[
\int_{\Sigma} (H_0 - H) \, dA_{\gamma} \geq 0,
\]

with equality if and only if data comes from Euclidean \(\mathbb{R}^3\).
Shi–Tam Theorem

Theorem (Shi–Tam, 2002)
If \((\Sigma, \gamma, H)\) has a fill-in, then

\[
\int_{\Sigma} (H_0 - H) \, dA_{\gamma} \geq 0,
\]

with equality if and only if data comes from Euclidean \(\mathbb{R}^3\).

Remarks

• Nonnegativity of Brown–York mass
Shi–Tam Theorem

Theorem (Shi–Tam, 2002)
If \((\Sigma, \gamma, H)\) has a fill-in, then

\[
\int_{\Sigma} (H_0 - H) \, dA_{\gamma} \geq 0,
\]

with equality if and only if data comes from Euclidean \(\mathbb{R}^3\).

Remarks

- Nonnegativity of Brown–York mass
- Consequence: for \(H\) “too large”, \((\Sigma, \gamma, H)\) has no fill-in.
Theorem (Shi–Tam, 2002)
If \((\Sigma, \gamma, H)\) has a fill-in, then

\[
\int_{\Sigma} (H_0 - H) \, dA_{\gamma} \geq 0,
\]

with equality if and only if data comes from Euclidean \(\mathbb{R}^3\).

Remarks

- Nonnegativity of Brown–York mass
- Consequence: for \(H\) “too large”, \((\Sigma, \gamma, H)\) has no fill-in.
- Fundamentally depends on positive mass theorem
Main Theorem

Idea of Bray: consider data $(\Sigma, \gamma, \lambda H)$ as function of parameter $\lambda \in \mathbb{R}^+$.

Theorem (J.)

There exists a unique $\lambda_0 > 0$ such that $(\Sigma, \gamma, \lambda H)$ is positive type if and only if $\lambda \in (0, \lambda_0)$. Moreover, data is negative type if $\lambda > \lambda_0$.

Remarks

• Conjecture: data is zero type at $\lambda = \lambda_0$.

• λ_0 is canonically associated to $(\Sigma, \gamma, \lambda H)$.
Main Theorem

Idea of Bray: consider data \((\Sigma, \gamma, \lambda H)\) as function of parameter \(\lambda \in \mathbb{R}^+\).

Theorem (J.)

There exists a unique \(\lambda_0 > 0\) such that \((\Sigma, \gamma, \lambda H)\) is positive type if and only if \(\lambda \in (0, \lambda_0)\).
Main Theorem

Idea of Bray: consider data $(\Sigma, \gamma, \lambda H)$ as function of parameter $\lambda \in \mathbb{R}^+$.

Theorem (J.)

There exists a unique $\lambda_0 > 0$ such that $(\Sigma, \gamma, \lambda H)$ is positive type if and only if $\lambda \in (0, \lambda_0)$. Moreover, data is negative type if $\lambda > \lambda_0$.
Main Theorem

Idea of Bray: consider data \((\Sigma, \gamma, \lambda H)\) as function of parameter \(\lambda \in \mathbb{R}^+\).

Theorem (J.)

There exists a unique \(\lambda_0 > 0\) such that \((\Sigma, \gamma, \lambda H)\) is positive type if and only if \(\lambda \in (0, \lambda_0)\). Moreover, data is negative type if \(\lambda > \lambda_0\).

Remarks

- Conjecture: data is zero type at \(\lambda = \lambda_0\).
Main Theorem

Idea of Bray: consider data \((\Sigma, \gamma, \lambda H)\) as function of parameter \(\lambda \in \mathbb{R}^+\).

Theorem (J.)

There exists a unique \(\lambda_0 > 0\) such that \((\Sigma, \gamma, \lambda H)\) is positive type if and only if \(\lambda \in (0, \lambda_0)\). Moreover, data is negative type if \(\lambda > \lambda_0\).

Remarks

- Conjecture: data is zero type at \(\lambda = \lambda_0\).
- \(\lambda_0\) is canonically associated to \((\Sigma, \gamma, H)\).
Outline of proof

Let

\[I_+ = \{ \lambda > 0 : (\Sigma, \gamma, \lambda H) \text{ is positive type} \} \]
Outline of proof

Let

\[I_+ = \{ \lambda > 0 : (\Sigma, \gamma, \lambda H) \text{ is positive type} \} \]

- **Step 1:** \(I_+ \) is nonempty. Construct a fill-in for \(\lambda \) small as perturbation of cylinder.
Outline of proof

Let

\[I_+ = \{ \lambda > 0 : (\Sigma, \gamma, \lambda H) \text{ is positive type} \} \]

- Step 1: \(I_+ \) is nonempty. Construct a fill-in for \(\lambda \) small as perturbation of cylinder.
- Step 2: \(I_+ \) is connected. Prove: if \((\Sigma, \gamma, H) \) is nonnegative type, \((\Sigma, \gamma, \alpha H) \) is positive if \(\alpha \in (0, 1) \).
Outline of proof

Let

\[I_+ = \{ \lambda > 0 : (\Sigma, \gamma, \lambda H) \text{ is positive type} \} \]

- Step 1: \(I_+ \) is nonempty. Construct a fill-in for \(\lambda \) small as perturbation of cylinder.
- Step 2: \(I_+ \) is connected. Prove: if \((\Sigma, \gamma, H) \) is nonnegative type, \((\Sigma, \gamma, \alpha H) \) is positive if \(\alpha \in (0, 1) \). Use:

\[
R = -2\dot{H} + 2K - H^2 - \|k\|^2
\]
Outline of proof

Let

\[I_+ = \{ \lambda > 0 : (\Sigma, \gamma, \lambda H) \text{ is positive type} \} \]

- Step 1: \(I_+ \) is nonempty. Construct a fill-in for \(\lambda \) small as perturbation of cylinder.
- Step 2: \(I_+ \) is connected. Prove: if \((\Sigma, \gamma, H)\) is nonnegative type, \((\Sigma, \gamma, \alpha H)\) is positive if \(\alpha \in (0, 1) \). Use:
 \[R = -2\dot{H} + 2K - H^2 - \|k\|^2 \]
- Step 3: \(I_+ \) is bounded above. Follows from Shi–Tam theorem. So \(I_+ \) is \((0, \lambda_0)\) or \((0, \lambda_0]\)
Outline of proof

Let

\[I_+ = \{ \lambda > 0 : (\Sigma, \gamma, \lambda H) \text{ is positive type} \} \]

- **Step 1:** \(I_+ \) is nonempty. Construct a fill-in for \(\lambda \) small as perturbation of cylinder.
- **Step 2:** \(I_+ \) is connected. Prove: if \((\Sigma, \gamma, H)\) is nonnegative type, \((\Sigma, \gamma, \alpha H)\) is positive if \(\alpha \in (0, 1) \). Use:
 \[R = -2\dot{H} + 2K - H^2 - \|k\|^2 \]
- **Step 3:** \(I_+ \) is bounded above. Follows from Shi–Tam theorem. So \(I_+ \) is \((0, \lambda_0)\) or \((0, \lambda_0]\)
- **Step 4:** Rule out latter: if \(\lambda_0 \) corresponded to a positive type fill-in, could bump up mean curvature slightly.
Application to quasi-local mass

- Use λ_0 to define a quasi-local mass of Bartnik data (Σ, γ, H).

- On radius r coordinate sphere in Schwarzschild metric, $\lambda_0 = 1 + m^2 r^{-1} - m^2 r > 1$.

- New definition. In general:
 $$m(\Sigma, \gamma, H) = \frac{\text{area} \\gamma(\Sigma)}{16\pi} \left(1 - \frac{1}{\lambda_0^2}\right)$$

- Recovers "mass coordinate sphere in Schwarzschild."
Application to quasi-local mass

- Use λ_0 to define a quasi-local mass of Bartnik data (Σ, γ, H).
- On radius r coordinate sphere in Schwarzschild metric,

$$
\lambda_0 = \frac{1 + \frac{m}{2r}}{1 - \frac{m}{2r}} > 1.
$$
Application to quasi-local mass

• Use λ_0 to define a quasi-local mass of Bartnik data (Σ, γ, H).

• On radius r coordinate sphere in Schwarzschild metric,

\[\lambda_0 = \frac{1 + \frac{m}{2r}}{1 - \frac{m}{2r}} > 1.\]

• New definition. In general:

\[m(\Sigma, \gamma, H) = \sqrt{\frac{\text{area}_\gamma(\Sigma)}{16\pi}} \left(1 - \frac{1}{\lambda_0^2}\right)\]
Application to quasi-local mass

• Use λ_0 to define a quasi-local mass of Bartnik data (Σ, γ, H).
• On radius r coordinate sphere in Schwarzschild metric,

$$\lambda_0 = \frac{1 + \frac{m}{2r}}{1 - \frac{m}{2r}} > 1.$$

• New definition. In general:

$$m(\Sigma, \gamma, H) = \sqrt{\frac{\text{area}_\gamma(\Sigma)}{16\pi}} \left(1 - \frac{1}{\lambda_0^2}\right)$$

• Recovers “m” on coordinates spheres in Schwarzschild.
Test cases, revisited

- $m(\Sigma) = 0$
Test cases, revisited

- \(m(\Sigma) = 0 \)
- \(m(\Sigma) = m \)
Test cases, revisited

- \(m(\Sigma) = 0 \)
- \(m(\Sigma) = m \)
- \(m(\Sigma) = 0 \)
General properties

For this definition of quasi local mass:

• $m(\Sigma) \geq 0$ if Σ has a fill-in. Equality implies any fill-in is static vacuum.
General properties

For this definition of quasi local mass:

- $m(\Sigma) \geq 0$ if Σ has a fill-in. Equality implies any fill-in is static vacuum.
- Black hole limit property.
General properties

For this definition of quasi local mass:

- \(m(\Sigma) \geq 0 \) if \(\Sigma \) has a fill-in. Equality implies any fill-in is static vacuum.
- Black hole limit property.
- Monotonicity in spherical symmetry.
Further questions

- lift the restriction $K_\gamma > 0$
Further questions

- lift the restriction $K_\gamma > 0$
- monotonicity in general?
Further questions

- lift the restriction $K_\gamma > 0$
- monotonicity in general?
- handle general slices of spacetimes