Problem 39:
Given a commutative ring \(R \) with identity, we consider the set \(\text{Seq}(R) \) consisting of all sequences \(s = (s_0, s_1, s_2, s_3, \ldots) \) where each \(s_i \) is an element of \(R \). For instance, with \(R = \mathbb{Z} \), the following are elements of \(\text{Seq}(\mathbb{Z}) \): \((0, 1, 4, 9, \ldots)\), or \((1, 0, -1, 0, 1, 0, -1, \ldots)\). Generally, we will denote by \(s_i \) the \(i \)th entry in the sequence \(s \), where we begin to count entries at number 0. We define the following operations on \(\text{Seq}(R) \):

The sum \(a + b \) of two sequences is defined componentwise: \(a + b = (a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots) \).

The Cauchy product of two sequences is defined as follows:

\[
ab = (a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0, \ldots)
\]

such that \((ab)_n = \sum_{i=0}^{n} a_ib_{n-i} = a_0b_n + a_1b_{n-1} + \ldots + a_{n-1}b_1 + a_nb_0\).

(a) Make sure that you understand the definition: To this end, calculate the Cauchy product \(ab \) of the sequence \(a = (1, 1, 1, 1, 1, \ldots) \) with \(b = (0, 1, 2, 3, 4, 5, \ldots) \) in \(\text{Seq}(\mathbb{Z}) \). Which number is the the entry \((ab)_3\)?

(b) Now show that \(\text{Seq}(R) \) with these operations is a commutative ring.

We call this ring \(R[[X]] \) (The ad-hoc name \(\text{Seq}(R) \) was just for the set.)

Problem 40:
In the ring \(\mathbb{Z}[[X]] \), show that the element \(a = (1, 1, 1, \ldots) \) is invertible and give its inverse.

Problem 41:
We consider the subset \(\text{Seq}_0(R) \) of \(\text{Seq}(R) \), consisting of those sequences that have only finitely many non-zero entries. For instance, the sequence \((1, 2, 0, -7, 3, 0, 0, 0, 0, \ldots)\) is in \(\text{Seq}_0(\mathbb{Z}) \). Such sequences can be written in abbreviated form as finite sequences by omitting the trailing zeros: \((1, 2, 0, -7, 3)\). Show that \(\text{Seq}_0(R) \) is a subring of \(\text{Seq}(R) \). In particular, to gain sufficient understanding concerning the closure of multiplication, calculate the Cauchy product of \((1, 2, 0, -7, 3)\) and \((2, -1, 4)\).

Problem 42:
In the ring \(\text{Seq}_0(R) \), we denote the element \((0, 1)\) as \(X \). Calculate \(X^0, X^2, X^3 \) etc., and write \((1, 2, 0, -7, 3)\) as a linear combination of powers of \(X \).

Problem 43:
From now on, we will take the liberty of writing the elements of \(\mathbb{Z}_n \) as \(0, 1, 2, \ldots, n-1 \), rather than \([0], [1], [2], \ldots, [n-1]\) when no confusion arises. Calculate \((1 + 2X)^3\) in the ring \(\mathbb{Z}_3[[X]] \).

Comments:
The usual symbol for the ring \(\text{Seq}_0(R) \) is \(R[X] \), and this ring is called the polynomial ring with coefficients in \(R \). Even though we can and will later plug in elements of \(R \) for the symbol \(X \), as you would when viewing polynomials as functions of a variable, it is crucial that you do NOT view the ring of polynomials over \(R \) as a subring of the ring of functions from \(R \) to \(R \). It MAY NOT BE one!!!

The usual symbol for the ring, consisting of the set \(\text{Seq}(R) \) and the addition and multiplication defined here, is \(R[[X]] \), and it is called the “ring of formal power series with coefficients in \(R \”.

(Name to be explained in lecture. Just take note here: unlike the power series you may have encountered at the end of Calculus II, you are NOT expected to plug anything in for \(X \) here, and therefore no convergence issues arise.) And one of the reasons I introduce this example is to stress the previous remark about polynomial rings, where plugging in ring elements for \(X \) is not part of the definition of \(R[X] \) either.
Problem 44:
In the polynomial ring \(\mathbb{Z}_6[X] \), find two polynomials \(p \) and \(q \), such that \(\deg(pq) < (\deg p) + (\deg q) \).
Note that \(\mathbb{Z}_6 \) is not an integral domain; so the purpose of this problem is to show that the assumption that the coefficient ring be an integral domain is really needed for the degree formula to hold.

Problem 45:
In the ring \(\mathbb{Z}[X] \) take the polynomials \(a = X^3 + X^2 + 2X + 1 \) and \(b = 2X^2 \). Show that it is not possible to find polynomials \(q \) and \(r \) in \(\mathbb{Z}[X] \) such that \(a = bq + r \) and \(\deg r < \deg b \). If the coefficients are taken from a field, the euclidean algorithm asserts that such a division with remainder is possible. So this problem serves as an illustration that the requirement that the coefficient ring be a field is really needed for the euclidean algorithm.

Problem 46:
In the ring \(\mathbb{Q}[X] \), find a GCD of \(a = X^3 - 7X^2 + 3X + 3 \) and \(b = X^3 - 6X^2 + X + 7 \). Also write the GCD thus obtained as a linear combination of \(a \) and \(b \).

Problem 47:
In the ring \(\mathbb{Z}_{13}[X] \), find a GCD of the \(\text{“same”} \) polynomials \(a = X^3 - 7X^2 + 3X + 3 \) and \(b = X^3 - 6X^2 + X + 7 \), and write the GCD thus obtained as a linear combination of \(a \) and \(b \).

I put the word \(\text{“same”} \) in quotes, because this is an abuse of language. The coefficient \(-6\) in \(b \) of problem 46 is the integer \(-6\), whereas in problem 47, the ‘same’ \(-6\) is a shorthand for the element \([-6]_{13} = [7]_{13} \in \mathbb{Z}_{13} \). But it’s nevertheless common language usage to consider the ‘same’ polynomial in different rings.

Problem 48:
In a polynomial ring \(R[X] \) (\(R \) is a commutative ring with 1), choose two polynomials \(p_1, p_2 \). Consider the set
\[
I(p_1, p_2) := \{r_1p_1 + r_2p_2 \mid r_1, r_2 \in R[X]\}
\]
of all linear combinations of \(p_1 \) and \(p_2 \). (This is a set of common interest in algebra, but the notation I have used for it is different from the usual notation.)
Show that \(I(p_1, p_2) \) is a subring of \(R[X] \) (it may not have a multiplicative identity, though).

Problem 49:
Continuing the previous problem, show that \(I(p_1, p_2) \) even is an \textit{ideal}. — “Ideal” is a new concept for you, and here is the definition: A subring \(S \) of a commutative ring \(T \) is called an \textit{ideal} if it has the property: For any \(s \in S \) and any \(t \in T \), it holds \(st \in S \).

Rmk: The same set of problems 48, 49 could be done with any number of given polynomials \(p_1, p_2, p_3, \ldots \), including the possibility of only a single polynomial.

Problem 50:
Give an example of a polynomial in \(\mathbb{Q}[X] \) that is not prime (i.e. can be factored), but has no root in \(\mathbb{Q} \). What is the smallest degree such a polynomial can have (explain why)?

Problem 51:
Show that the polynomial \(p = X^2 + X + 1 \) is irreducible in \(\mathbb{Z}_2[X] \).
(Obviously \(p \) is not a constant polynomial, but:) show that the polynomial function \(\mathbb{Z}_2 \rightarrow \mathbb{Z}_2, x \rightarrow p(x) \) is a constant function.

Problem 52:
Show that the polynomial \(p = X^4 + 1 \) is irreducible in \(\mathbb{Q}[X] \), but not in \(\mathbb{R}[X] \) nor in \(\mathbb{C}[X] \). Give a complete factorization in \(\mathbb{R}[X] \), and a complete factorization in \(\mathbb{C}[X] \).
Also give three different incomplete factorizations (product of two quadratics) in \(\mathbb{C}[X] \) (for later use).
Problem 53:
In the fields \mathbb{Z}_p for $p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29$, find one solution of the equations $x^2 + 1 = 0$, $x^2 - 2 = 0$, $x^2 + 2 = 0$ each, or conclude that none exists. Basically that’s trial and error, and I have filled in all but three of the “doesn’t exist” cases, and a few of the existence cases, to save you work. Note also that in the example $p = 29$, to find solutions, I only needed to test 1, 2, 3, ..., 14, since $15 \equiv -14, 16 \equiv -13, \ldots$.

<table>
<thead>
<tr>
<th>p</th>
<th>$x^2 + 1 = 0$</th>
<th>$x^2 - 2 = 0$</th>
<th>$x^2 + 2 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>DNE</td>
<td>DNE</td>
<td>DNE</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>DNE</td>
<td>DNE</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>DNE</td>
<td>DNE</td>
</tr>
<tr>
<td>11</td>
<td>DNE</td>
<td></td>
<td>DNE</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>DNE</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DNE</td>
<td>DNE</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>DNE</td>
<td>DNE</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>DNE</td>
<td>DNE</td>
</tr>
</tbody>
</table>

Once this is accomplished, use the information, and wisdom gleaned from the very last part of the previous problem, to factor $X^4 + 1$ completely in $\mathbb{Z}_p[X]$ for the prime numbers $p = 2, 3, 5, 7, 11, 13, 17$ (and more of them, if you are bored, or want to get bored).

Background info: A simple result from the theory of quadratic residues (in elementary number theory), or in other terms, a simple argument about groups, which we have alas no time to go into, implies in particular: if p is an odd prime such that there is no element in \mathbb{Z}_p whose square is -1, and also no element whose square is 2, then there does exist an element whose square is -2.

Accepting this fact, you can conclude that at least one of the factorizations of $X^4 + 1$ into quadratics (in $\mathbb{Q}[X]$) found in problem 52 can serve as a model for factorization in $\mathbb{Z}_p[X]$; in other words: $X^4 + 1$ can be factored nontrivially in *every* $\mathbb{Z}_p[X]$.

Problem 54:
We have seen that the mapping $F[X] \rightarrow \text{Fct}(F \rightarrow F)$, which assigns to each polynomial the corresponding polynomial function $F \rightarrow F$ cannot be one-to-one, if the field F contains finitely many elements. (Simply because in this case there are still infinitely many polynomials, but only finitely many functions $F \rightarrow F$).

Now show conversely that, if F contains infinitely many elements, then the mapping $F[X] \rightarrow \text{Fct}(F \rightarrow F)$ is indeed one-to-one.

Problem 55:
We have seen that a polynomial of degree n in $F[X]$ can have at most n roots in F (or any extension field of F). This assumed that F be a field. In contrast, consider the polynomial ring $\mathbb{Z}_{25}[X]$.

How many roots does the polynomial X^2 have in \mathbb{Z}_{25}?

Give several essentially different factorizations of X^2 in \mathbb{Z}_{25}, thus showing that the unique factorization property may fail in $R[X]$, if R is not a field.

Problem 56:
In $\mathbb{Z}_2[X]$, consider the ideal I of all multiples of the irreducible polynomial $X^3 + X + 1$. Denoting the equivalence class $[X]_I$ in $\mathbb{Z}_2[X]/I$ as j, list all elements of $\mathbb{Z}_2[X]/I$, and give their multiplication table. In particular, find the inverse of $1 + j$ in the field $\mathbb{Z}_2[X]/I$.