Malthusian law:

\[\dot{x} = k x \quad \text{hence} \quad x(t) = C e^{kt} \]

with \(C = x(0) \)

\(t \): time in years, beginning in 1980 with \(t = 0 \)

We get \(k \) from the measurement in 1987 (\(t = 7 \))

\[\frac{x(7)}{3000} = \frac{x(0)}{1000} e^{7k} \quad \Rightarrow \quad 7k = \ln 3 \]

In 2004, we have \(t = 24 \)

\[x(24) = 1000 \cdot e^{24k} = 1000 \cdot \left(\frac{e^{7k} e^{17k}}{3} \right)^{24/7} = 1000 \cdot 3^{24/7} \approx 43200 \]

(a higher precision would probably be unrealistic, when we try to count fish; maybe this precision is already overdone)

Analogous to \#9:

\[300 e^{10k} = 1500 \quad \Rightarrow \quad k = \frac{1}{10} \ln 5 \]

In 2004, we have \(t = 34 \)

\[300 e^{24k} = 300 \cdot e^{2.4 \ln 5} = 300 \cdot 5^{2.4} \approx 24000 \]

\[x(0) = 7 \quad \text{(in units of 10^6 tons)} \]

\[\dot{x} = 2x - 15 \]

\[x(t) = \frac{15}{2} - \frac{1}{2} e^{2t} \]

If \(t_0 = \frac{1}{2} \ln 15 \), \(x(t_0) = 0 \), that is, the population has vanished after \(\frac{1}{2} \ln 15 \approx 1.35 \) years

If we want \(\dot{x} = 2x - R \), \(R \) unknown fishing rate such that \(x(t) \equiv 7 \) is a sol'n, we need (plug sol'n into eqn, then solve for \(R \))

\[R = 14 \]