In the exercises that follow, A, B, C and D are arbitrary sets, unless described otherwise.

167. If $A = (-\infty, 0]$, $B = [0, \infty)$, and $C = (0, 1)$, find and draw each of the following sets: $A \times (B \cap C)$, $(A \cap B) \times C$.

168. If $A = (-\infty, 0]$, $B = [0, \infty)$, and $C = (0, 1)$, find and draw each of the following sets: $(A \setminus B) \times (A \cap B)$, $(A \times B) \cap (B \times C)$.

169. Prove if $A \subseteq B$ and $C \subseteq D$ then $A \times C \subseteq B \times D$.

170. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

171. Prove that $A \times \emptyset = \emptyset$.

172. Prove that $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.

173. Prove that $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

174. Prove or disprove that $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$.

175. Prove that $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

176. Let $B \subseteq A$ and prove that $(A \times A) \setminus (B \times B) = ((A \setminus B) \times A) \times (A \times (A \setminus B))$.

177. Let $C \neq \emptyset$ and prove that if $A \times C = B \times C$ then $A = B$.

178. Let $A \neq B$ and prove that if $A \times C = B \times C$ then $C = \emptyset$.

179. Find the domain and range of the following relation: $x \, R \, y$ means $x, y \in \mathbb{R}$ and $y = 3 \cdot (x - 1)^2 + 2$.

180. Find the domain and range of the following relation: $x \, R \, y$ means $x, y \in \mathbb{R}$ and $y = 2 \cdot x^2 - 8 \cdot x + 9$.

181. Find the domain and range of the following relation: $x \, R \, y$ means $x, y \in \mathbb{R}$ and $x^2 - y^2 = 1$.

182. Find the domain and range of the following relation: $x \, R \, y$ means $x, y \in \mathbb{R}$ and $xy = x^2 - 1$.

183. Find the domain and range of the following relation: $x \, R \, y$ means $x, y \in \mathbb{R}$ and $\sqrt{1 - x} = (x + 1)y$.

184. For each of the following relations, prove or find a counterexample for each of the properties: reflexive, symmetric and transitive.

 (a) Define $x \, R \, y$ on $\mathbb{Z} \times \mathbb{Z}$ to mean $x - y$ is a nonnegative integer.

 (b) Define $x \, R \, y$ on $\mathbb{N} \times \mathbb{N}$ to mean xy is an integer.

 (c) Define $x \, R \, y$ on $\mathbb{Z} \times \mathbb{Z}$ to mean $x - y$ is an odd integer.

 (d) Define $x \, R \, y$ on $\mathbb{R} \times \mathbb{R}$ to mean $x - y$ is irrational.

 (e) Define $x \, R \, y$ on $\mathbb{R} \times \mathbb{R}$ to mean $x \geq y$.

185. For each of the following relations prove that it is an equivalence relation.

 (a) Given $x, y \in \mathbb{R}$, $x \, R \, y$ means $y = \sqrt{x^2}$.

 (b) Given ordered pairs $(a, b), (p, q) \in \mathbb{R} \times \mathbb{R}$, $(a, b) \, R \, (p, q)$ means $pb = aq$.

Math 300 – Problems #6 - COMPLETE
(c) Given \(x, y \in \mathbb{R} \), \(x R y \) means \(x - y \) is an integer.
(d) Given \(x, y \in \mathbb{R} \setminus \{0\} \), \(x R y \) means \(x/y = \pm 1 \).
(e) Let \(n \) be a positive natural number. Define a relation \(R \) on the set of integers \(\mathbb{Z} \) by: \(x R y \) if and only if \(x - y \) is divisible by \(n \).
(f) Define a relation \(R \) on the set of integers \(\mathbb{Z} \) as follows: \(x R y \) if and only if \(x + y \) is even.
(g) Define a relation \(R \) on the set of reals as follows: \(x R y \) if and only if \(x - y \) is rational.
(h) A set \(X \) is the union of 6 subsets \(A_1, \ldots, A_6 \) which are mutually disjoint (that means \(A_i \cap A_j = \emptyset \) if \(i \neq j \)). Define the relation \(R \) on \(X \) as follows: \(x R y \) if and only if there is \(i \) so that \(A_i \) contains both \(x \) and \(y \).

186. Let \(R \) be a relation on \(X \times Y \). Given \(x \in X \) we define the subset \(A_x \) of \(Y \) as follows: \(A_x = \{ y \in Y \mid x R y \} \). Prove that if \(R \) is an equivalence relation (and \(X = Y \)) then for each pair \(x, y \in X \) then either \(A_x = A_y \) or \(A_x \cap A_y = \emptyset \) (identical or disjoint).

187. A set \(X \) contains 9 subsets \(A_1, \ldots, A_9 \) not necessarily disjoint. We define the relation \(R \) on \(X \) as follows: \(x R y \) if and only if there is \(i \) so that \(A_i \) contains both \(x \) and \(y \). Prove that \(R \) is a reflexive relation if and only if \(X \) is the union of all of \(A_i, i \leq 9 \).

188. A set \(X \) contains 9 subsets \(A_1, \ldots, A_9 \). None of them is contained in the union of remaining ones. Define the relation \(R \) on \(X \) as follows: \(x R y \) if and only if there is \(i \) so that \(A_i \) contains both \(x \) and \(y \). Prove that \(R \) is a transitive relation if all of \(A_i, i \leq 9 \) are mutually disjoint.

189. Suppose \(R \) is a symmetric relation on \(X \times X \) which satisfies

\[
\text{Domain}(R) \cup \text{Range}(R) = X.
\]

Prove that \(\text{Domain}(R) = X = \text{Range}(R) \).

190. Suppose \(R \) is a symmetric and transitive relation on \(X \times X \) which satisfies

\[
\text{Domain}(R) \cup \text{Range}(R) = X.
\]

Prove that \(R \) is an equivalence relation on \(X \).

191. Suppose \(R \) and \(S \) are equivalence relations on \(X \). Prove that \(R \cap S \) is an equivalence relation on \(X \). What about \(R \cup S \)?

192. Suppose \(R \) is a reflexive relation on \(X \times X \) with domain \(X \) which satisfies the following condition: if \(x R y \) and \(x R z \), then \(y R z \). Prove that \(R \) is an equivalence relation on \(X \). Does every equivalence relation satisfy this condition?