20. Find all \(x \in \mathbb{R} \) for which the inequality \(\frac{x}{x+2} < 3 \) is true.

21. Find all \(x \in \mathbb{R} \) for which the inequality \(\frac{x-1}{2x-1} < -1 \) is true.

22. Find all \(x \in \mathbb{R} \) for which the inequality \(\frac{x-2}{2x-4} > \frac{1}{2} \) is true.

23. Prove \(a \) is positive if and only if \(-a \) is negative.

24. If \(a < b \) and \(c < 0 \), prove \(ac > bc \).

25. If \(a < b \) and \(c < d \), prove \(a + c < b + d \).

26. If \(0 < a < b \) and \(0 < c < d \), prove \(ac < bd \).

27. If \(a < b \), \(b \geq 0 \), and \(0 \leq c \leq d \), prove \(ac \leq bd \).

28. If \(a < b \), \(a > 0 \), and \(c < d < 0 \), prove that \(ad > bc \).

29. Prove \(-1 < 0 < 1\).

30. If \(0 < a < 1 \), prove \(a^2 < a \).

31. If \(a > 1 \), prove \(a < a^2 \).

32. Suppose \(a > 0 \). If \(a < b \), prove \(a^2 < b^2 \).

33. Suppose \(a > 0 \). Prove that \(a < b \) if and only if \(b > 0 \) and \(a^n < b^n \) for some \(n \in \mathbb{N} \).

34. If \(0 < a < b \), prove \(a^{-1} > b^{-1} > 0 \).

35. If \(0 < a < 1 \), prove \(\frac{1}{a^2} > \frac{1}{a} \).

36. If \(a > 1 \), prove \(\frac{1}{a^2} < \frac{1}{a} \).

37. If \(a \leq b \), prove \(a + c \leq b + c \) for all \(c \in \mathbb{R} \).

38. If \(a \leq b \), and \(c \geq 0 \), prove \(ac \leq bc \).

39. Prove \(ab > 0 \) implies either both \(a \) and \(b \) are positive or both \(a \) and \(b \) are negative.

40. If \(a > 0 \), prove that there is an \(\epsilon > 0 \) such that \(a > \epsilon \).

41. If \(a > 0 \), prove that there is an \(\epsilon \in (0, 1) \) such that \(\epsilon < a \).

42. Suppose \(a, b \in \mathbb{R} \). Prove that \(a < b + \epsilon \) holds for all \(\epsilon > 0 \) if and only if \(a \leq b \).

43. Prove that \(a > b - \epsilon \) holds for all \(\epsilon > 0 \) if and only if \(a \geq b \).