Math 300 – Cardinality and Infinity

Definition: For a set \(A \) the *cardinality* of \(A \) is the number of distinct elements in \(A \). We’ll write \(n(A) \) for the cardinality of \(A \).

Definition: For \(A = \{1,2,\ldots,n\} \), \(n(A) = n \). For \(\mathbb{N} = \{1,2,\ldots\} \), \(n(\mathbb{N}) = \infty \).

Definition: Two sets \(A \) and \(B \) have the *same size* or *cardinality* if there exists a function \(f : A \to B \) which is 1−1 and onto.

Lemma: Two sets \(A \) and \(B \) have the same size if there is a function \(f : A \to B \) which is 1−1 and a function \(g : A \to B \) which is onto.

Exercises: Prove or disprove in each case that \(n(A) = n(B) \):

1. \(A = \mathbb{N}, B = \{2,3,\ldots\} \).
2. \(A = \mathbb{N}, B = \{0,1,2,3,\ldots\} \).
3. \(A = \mathbb{N}, B = \{2,4,6,8,\ldots\} \).
4. \(A = \mathbb{N}, B = \{\ldots,-2,-1,0,1,2,\ldots\} \).
5. \(A = \mathbb{N}, B = \{\frac{a}{b} \mid a, b \in \mathbb{N}, b \neq 0\} \).
6. \(A = [0,1], B = [0,1] \cup \{2\} \).
7. \(A = [0,1], B = [0,2] \).
8. \(A = [0,1], B = [0,\infty) \).
9. \(A = [0,1], B = \mathbb{R} \).
10. \(A = [0,1], B = \mathbb{N} \).