1. Let \(V \) be the space of real-valued single variable functions. Let \(W \) be the collection of all functions that have a zero at \(x = 12 \). In other words, \(W \) is all functions such that \(f(12) = 0 \). Show that \(W \) is a subspace of \(V \).

 \[
 \text{closed under } +: \text{ let } f, g \text{ be functions in } W, \text{ we need to show } f + g \text{ is also in } W. \quad \text{But } f + g = f(x) + g(x).
 \]
 \[
 \text{And so, } f(12) + g(12) = 0 + 0 = 0. \quad \text{Hence, } f + g \text{ is also in } W.
 \]

 \[
 \text{closed under } \cdot: \text{ let } c \text{ be any scalar.}
 \]
 \[
 \text{We need to show } cf \text{ is also in } W. \quad \text{But } cf = c \cdot f(x).
 \]
 \[
 \text{And so, } c \cdot f(12) = c \cdot 0 = 0. \quad \text{Hence, } cf \text{ is also in } W.
 \]

2. Let \(A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 0 & 2 \\ -1 & 2 & 1 \end{bmatrix} \).

 a. Does the column space of \(A \) (ie. \(\text{gen}\{c_1, c_2, c_3\} \)) span \(\mathbb{R}^3 \)? Explain.

 In other words, can \(c_1 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \) equal any vector in \(\mathbb{R}^3 \)?

 But, this is asking if \(A \overrightarrow{c} \) can be any vector in \(\mathbb{R}^3 \). Since \(A \) is square, this will ultimately follow if \(A \) is invertible (as \(A \overrightarrow{c} = \overrightarrow{0} \) has a solution for every \(\overrightarrow{0} \)). And, \(|A| = -1 \begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix} = -1(3+6) - 2(4+3) \neq 0 \).

 Hence, \(A \) is invertible and \(A \overrightarrow{c} \) can be any vector in \(\mathbb{R}^3 \). That is to say, the column space of \(A \) spans \(\mathbb{R}^3 \).

 b. Are the column vectors of \(A \) linearly independent? Explain.

 In other words, does \(c_1 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \) have only the solution \(c_1 = c_2 = c_3 = 0 \)? But, this is asking if \(A \overrightarrow{c} = \overrightarrow{0} \) has only the solution \(\overrightarrow{c} = \overrightarrow{0} \). Since \(A \) is invertible (det \(\neq 0 \) from a), we know that \(\overrightarrow{c} = \overrightarrow{0} \) is the only solution to \(A \overrightarrow{c} = \overrightarrow{0} \). Hence, the column vectors of \(A \) are indeed linearly independent.

 c. Would these two facts coincide for any invertible matrix \(A \) in \(\mathbb{R}^{n \times n} \)? Explain.

 Yes. If \(A \) is an invertible, then \(A \overrightarrow{x} \) can be any vector in \(\mathbb{R}^n \) & \(A \overrightarrow{0} = \overrightarrow{0} \) has only the solution \(\overrightarrow{x} = \overrightarrow{0} \). In other words, if \(A \) is invertible, then the column vectors of \(A \) span \(\mathbb{R}^2 \) and are linearly independent.
3. Let \(B \) be in \(\mathbb{R}^{mxn} \). If \(n > m \), then the null space of \(B \) contains infinitely many vectors of \(\mathbb{R}^n \). Explain.

The null space is all solutions to \(Bx = 0 \). The null space is never empty as \(x = 0 \) always solves the system. Hence, the question remains if there is one and only one solution or infinitely many solutions. We know \(B \) is in \(\mathbb{R}^{mxn} \) and \(n > m \), hence, more variables than equations: \(B = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \). There can be at most one leading 1 per row; hence, there are at most \(m \) isolated variables. But, this means there is at least one free variable (since total \(n \) of variables is \(n \)).

4. The space \(\text{gen} \left[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right] \) spans diagonal matrices in \(\mathbb{R}^{3x3} \). Explain.

The space generated by these vectors is all linear combinations of these vectors. In other words, all elements of the form \(c_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \). Simplifying, this is all elements of the form \(\begin{bmatrix} c_1 & 0 & 0 \\ 0 & c_2 & 0 \\ 0 & 0 & c_3 \end{bmatrix} \). These are the diagonal matrices of \(\mathbb{R}^{3x3} \).

5. Show that \(\begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \), and \(\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \) are linearly independent in \(\mathbb{R}^{2x2} \).

To show, \(c_1 \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} + c_2 \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \). Simpifying, we get \(\begin{bmatrix} c_1 + 2c_2 + c_3 \\ 3c_1 + 3c_2 + 3c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \). This means \(c_1 + 2c_2 + c_3 = 0 \) and \(3c_1 + 3c_2 + 3c_3 = 0 \). This means \(3c_1 + 3c_2 + 3c_3 = 0 \).

This system will have only the solution \(x = 0 \) when the coefficient matrix is invertible.

6. Let \(V \) be a vector space, and let \(W \) be a subspace of \(V \). If \(W \) contains a single non-zero vector, it must contain infinitely many vectors. Explain.

Let \(\vec{x} \) be in \(W \) such that \(\vec{x} \neq \vec{0} \). Since \(W \) is a subspace, it is closed under scalar multiplication. Hence, \(c\vec{x} \) is in \(W \) for every \(c \).

But, there are infinitely many such \(c \).

Very Rigorous proof: If \(c_1 \neq c_2 \) and \(\vec{x} \neq \vec{0} \), then \(c_1\vec{x} - c_2\vec{x} = (c_2 - c_1)\vec{x} \neq \vec{0} \). This can't be zero since \(c_1 \neq c_2 \) means \(c_2 - c_1 \neq 0 \) and \(\vec{x} \neq \vec{0} \). Hence, their product is non-zero. And \(c_2\vec{x} - c_2\vec{x} = 0 \) means \(c_2\vec{x} = c_2\vec{x} \). In other words, different scalar multiples indeed yield different vectors.