1. Consider the vectors $\vec{a} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$.
 a. Compute $2\vec{a} + \vec{b}$ algebraically.
 b. On the xy-plane, draw a geometric representation of $2\vec{a} + \vec{b}$.

2. Let $A = \begin{bmatrix} 2 & 3 & -4 \\ 7 & 0 & 2 \\ -1 & 6 & 4 \end{bmatrix}$.
 a. Express $A\vec{x}$ as a linear combination of the column vectors of A.
 b. Find $\|\vec{c}_3\|$.
 c. Classify the angle between \vec{c}_1 and \vec{c}_2 as acute, obtuse, or right.

3. Let A be a 4×2 matrix, and let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ such that $T(\vec{x}) = \begin{bmatrix} 3x_1 - x_2 \\ 4x_2 \\ -2x_1 + 7x_2 \end{bmatrix}$.
 a. Multiplication of a vector by A defines a transformation from ______ to ______.
 b. Find the standard matrix associated with T.