1. Assume A and B are 3×3 matrices and c is any real number.
 a. If A is symmetric, is $c \cdot A$ also symmetric? Explain.
 b. If A is diagonal and B is upper triangular, must $A + B$ be upper triangular? Must $A + B$ be diagonal? Explain.
 c. Let Z be a matrix filled with zeros for every entry. Is Z lower triangular? Explain.

2. Consider the matrix $A = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 3 & 5 & -1 & 4 \\ -2 & 4 & 0 & -3 \\ 0 & -1 & 0 & 1 \end{bmatrix}$.
 a. Compute M_{43}.
 b. Compute C_{43}.
 c. Compute $|A|$.

3. Assume A is a 5×5 matrix such that $|A| = 4$. Also assume E is a 5×5 elementary matrix.
 a. If E corresponds to $3 \cdot r_4 \leftrightarrow r_4$, find $|EA|$.
 b. If E corresponds to $r_2 \leftrightarrow r_5$, find $|EA|$.
 c. If E corresponds to $r_i - 10r_3 \leftrightarrow r_i$, find $|EA|$.

4. Assume A is an $n \times n$ matrix and c is any real number. Then, $|c \cdot A| = c^n \cdot |A|$. Explain.

5. Assume A and B are invertible matrices of the same size.
 a. Show that $|AB| = |A| \cdot |B|$. (Hint: elementary matrices.)
 b. Show that $|A^T A| = |A|^2$.

Quiz Fri Jun 5