Wed Feb 3 Lecture Commentary

What is meant by area “completely enclosed”

Technically, the notion at play here is what is referred to as mathematical “compactness”. A region of the xy-plane is compact if and only if it is closed and bounded. What that means in effect is best visualized.

Regions that are completely enclosed (ie. closed and bounded) are shaded. All other regions cut by the two (or three) curves are not completely enclosed. (In particular, all other regions extend off to infinity.)

How to know when to use the xy-plane and when you use the yx-plane

The last problem Phan did in class today was a bit of a roller coaster ride. Let me try to sort out the situation.

First, note any completely enclosed region has the same area no matter how much you rotate the picture. Imagine your phone or computer screen being rotated. The area in the enclosed region is the same. It’s really the exact same region, just from a slightly different vantage point. So, considering the xy-plane or the yx-plane (which is practically just a rotation by 90°…technically, there is also a reflection in there too…you’ll see this if you think about the remark for column four below), you will preserve the value of the desired enclosed area region(s).

Second, how do you know when to view the functions as $y = \cdots$ in the xy-plane and when you view them as $x = \cdots$ in the yx-plane? Consider the equations given in the problem Phan worked: \[
\begin{align*}
2x - y - 2 &= 0 \\
x - y^2 + 4 &= 0
\end{align*}
\] These equations turned out easier to solve for $x = \cdots$. What about these equations makes them easier to solve for x than y? Would it have been possible to recognize that it would have been simpler to solve for x from the get-go? I claim yes. The variable x is only of degree 1 in both equations! But, the variable y is of degree 2. It’s that simple.

Consider the equations below:

- $x^2 - y - 6 = 0$
- $2y - x = 0$
- $8 - \sqrt{x} + y = 0$
- $x - y^2 = 0$

- y not of degree 1
- Solve for x
- Graph in xy-plane
- x not of degree 1
- Solve for y
- Graph in yx-plane

Neither of degree 1
Harder problem

xy - or yx-plane a choice

A note regarding the second column, the expression $(y - 1)^2$ would become a degree 2 expression. And, a note regarding the last column, in such a situation, I have become comfortable graphing the $y = \cdots$ in the xy-plane and then rotating my paper 90° counterclockwise to graph the other orientation (keeping in mind the horizontal axis is now going positive to the left). It takes a little getting used to, but it’s nothing fancy really.