Section 1.5 - Exponential Functions

Definition: A function that has a variable in an exponent is called an exponential function.

- **Examples:**

(a)

Base:

Table of Values:

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph:

(b)

Base:

Table of Values:

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph:
• We can define an exponential function \(f(x) = a^x \) for any positive base \(a \). We always take the base to be positive.

• Exponential functions with bases \(a > 1 \) are used to model growth, as in populations or savings accounts.

• Exponential functions with bases \(a < 1 \) are used to model decay, as in depreciation.

• What happens if \(a = 1 \)?

Compound Interest

• What is interest?

• The word *compound* means that the interest is added to the account, earning more interest.

Example: Find the value of $5000 invested for 4 years at 10% compounded annually.

Banks always state *annual* interest rates, but the compounding may be done more than just once a year. For example, if a bank offers 8% compounded quarterly, then each quarter you get 2% (one quarter of the annual 8%), so that 2% of your money is added to the account each quarter.

Example: Find the value of $3000 invested for 1 year at 8% compounded quarterly.

\[
\text{For } P \text{ dollars invested at (annual) interest rate } r \text{ compounded } m \text{ times a year,}
\]
\[
\text{(Value after } t \text{ years)} = P\left(1 + \frac{r}{m}\right)^{mt}
\]
Use $m = ________$ for yearly compounding.

Use $m = ________$ for quarterly compounding.

Use $m = ________$ for monthly compounding.

Use $m = ________$ for daily compounding.

Example: Find the value of $\$5000$ invested for 4 years at 10\%$ compounded annually.

Example: Find the value of $\$3000$ invested for 1 year at 8\%$ compounded quarterly.

Example: Find the value of $\$2000$ invested for 3 years at 24\%$ compounded monthly.

Depreciation by a Fixed Percentage

Depreciation by a fixed percentage means that an object loses a fixed percentage of its value each year. Losing a percentage of value is like compound interest but with a negative interest rate. Therefore, we use the compound interest formula with $m = 1$ (since depreciation is annual) and with r being negative.

Example: A printing press, originally worth $\$50,000$, loses 20\% of its value each year. What is its value after 4 years?
Continuous Compounding
Under continuous compounding, the interest is added to your account as it is earned, with no delay.

For \(P \) dollars invested at (annual) interest rate \(r \) compounded continuously, (Value after \(t \) years) = \(Pe^{rt} \)

Remember, the value of the number \(e \) is \(e = 2.71828... \).

Example: Find the value of $1000 deposited in a bank at 10% interest for 8 years compounded continuously.

\[
\text{The Function } y = e^x
\]

Base:

Table of Values:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph:

Note the following from the graph of \(y = e^x \):
- \(e^x \) is never zero
- \(e^x \) is positive for all values of \(x \), even when \(x \) is negative