Section 4.1 - Exponential Functions

• A function that has a variable in an exponent is called an exponential function.

Examples:

(a) \(f(x) = a^x \)

(b) \(f(x) = b^x \)

• For \(a > 0 \), the exponential function with base \(a \) is defined by \(f(x) = a^x \).

• Notice that the graph of any such function passes through the point \((0, 1) \).

• If \(0 < a < 1 \), the exponential function \(f(x) = a^x \).

• If \(a > 1 \), the exponential function \(f(x) = a^x \).

• The larger (or smaller) the base, the more rapid the increase (or decrease).

• For \(a \neq 1 \), the function \(f(x) = a^x \) has domain \(\mathbb{R} \) and range \((0, \infty) \).

• If \(a = 1 \), the exponential function \(f(x) = 1^x \) with domain \(\mathbb{R} \) and range \(\{1\} \).
Identifying Graphs of Exponential Functions

Find the exponential function \(f(x) = a^x \) whose graph is given.

(a)

(b)

Transformations of Exponential Functions

(a)

(b)

(c)
Comparing Exponential and Power Functions: What Happens in the Long Run?

A **power function** is a function of the form \(f(x) = x^n \).

How do power functions and exponential functions compare as \(x \to \infty \)?

Example:

WINDOW 1:

WINDOW 2:

WINDOW 3:

- EVERY exponential growth function eventually dominates (overtakes) EVERY power function.

- EVERY exponential decay function will eventually approach 0 faster than EVERY power function with a negative exponent.

The Natural Exponential Function

- The **natural exponential function** is the exponential function \(f(x) = e^x \) with base \(e \). It is often referred to as the exponential function.

- Remember that \(e \approx 2.71828182845904523536 \).

Examples: Use the \(e^x \) key on your calculator to evaluate the following correct to five decimal places:

(a)

(b)

(c)
Examples of Graphing Exponential Functions with Base e

Example: The population of a certain species of bird is limited by the type of habitat required for nesting. The population behaves according to the growth model

$$n(t) = \frac{5600}{0.5 + 27.5e^{-0.04t}}$$

where t is measured in years.

(a) Find the initial bird population.

(b) Find the bird population after 2 years.

(c) What size does the population approach as time goes on?