Section 5.1 - The Unit Circle

The **unit circle** is the circle of radius 1 centered at the origin in the xy-plane. Its equation is

$$x^2 + y^2 = 1$$

Example: Show that the given point is on the unit circle.

Example: The point P is on the unit circle. Find $P(x, y)$ from the given information.

Terminal Points on the Unit Circle

- Suppose t is a real number. The **terminal point** determined by the real number t is the point $P(x, y)$ on the unit circle one arrives at by travelling a distance t along the unit circle, starting at the point $(1, 0)$ and moving in a counterclockwise direction if t is positive or in a clockwise direction if t is negative.

- Remember that the circumference of the unit circle is ___________.

Examples: Find the terminal point on the unit circle determined by each real number t.

(a)
(b)
(c)
(d)
Special Angles and Triangles

- We will soon show that
 - \(t = \frac{\pi}{6} \) corresponds to an angle with measure 30°
 - \(t = \frac{\pi}{4} \) corresponds to an angle with measure 45°
 - \(t = \frac{\pi}{3} \) corresponds to an angle with measure 60°

- Therefore the following triangles will be very useful:

30°-60°-90° Triangle 45°-45°-90° Triangle

- Use these triangles to find the terminal point determined by each given real number \(t \):

(a) \(t = \frac{\pi}{6} \)
The Reference Number
Let t be a real number. The reference number \bar{t} associated with t is the shortest distance along the unit circle between the terminal point determined by t and the x-axis.

Examples: Find the reference number for each value of t.

(a) $t = \frac{\pi}{4}$

(b) $t = \frac{\pi}{3}$

(c) $t = \frac{\pi}{6}$

(d) $t = \frac{3\pi}{4}$

Using Reference Numbers to Find Terminal Points
To find the terminal point P determined by any value of t, we use the following steps:

1. Find the reference number \bar{t}.
2. Find the terminal point $Q(a,b)$ determined by \bar{t}.
3. The terminal point determined by t is $P(\pm a, \pm b)$, where the signs are chosen according to the quadrant in which the terminal point lies.
Examples: Find the reference number \overline{t} for each value of t, and use the reference number to find the terminal point determined by t. Label each point on your unit circle.

(a) $t = \frac{2\pi}{3}$
(b) $t = \frac{4\pi}{3}$
(c) $t = \frac{5\pi}{3}$

(d) $t = \frac{5\pi}{6}$
(e) $t = \frac{7\pi}{6}$
(f) $t = \frac{11\pi}{6}$

(g) $t = \frac{3\pi}{4}$
(h) $t = \frac{5\pi}{4}$
(i) $t = \frac{7\pi}{4}$

Examples: Find the terminal point determined by t.

(a)

(b)

(c)