2005 FERMAT II TEST

1) Let \(k \) be a positive integer. Show that the sum of the first \(2k - 1 \) odd positive integers can be expressed as a sum of \(2k - 1 \) consecutive positive integers.

2) A square \(S \) is inscribed in a triangle \(T \) (so that the vertices of \(S \) are on the sides of \(T \)). Show that the area of \(T \) is at least twice the area of \(S \).

3) Show that for all positive real numbers \(X, Y, \) and \(\alpha \) the following inequality holds.
\[
X \sin^2 \alpha Y \cos^2 \alpha < X + Y
\]

4) Let \(f(X) \) be a polynomial with integral coefficients such that \(f(2004) = f(2005) = 5 \). Show that \(f(n) \neq 50 \) for all integers \(n \).

5) Suppose a hexagon with sides of alternating lengths 1 and 2 is inscribed in a circle of radius \(r \). Find \(r \).

6) Show that there are only finitely many integers \(x, y \) such that \(x^2 - xy + y^2 = 2005 \).

7) Compute \(a_1 + a_2 + \cdots + a_{2005} \) where \(a_n := \frac{2n + 1 + \sqrt{n^2 + n}}{\sqrt{n} + \sqrt{n + 1}} \) for all positive integers \(n \).

8) The top of a cube of side-length 1 is a square whose sides have mid-points \(A, B, C, D \) as shown in the figure below. The mid-points of the sides of the bottom square are similarly labeled \(A', B', C', D' \).

What is the side-length of the square whose vertices are the mid-points of \(AB', BC', CD', DA' \)?