1. Find the inverse Laplace transform

$$
\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+1\right)} e^{-3 s}\right)
$$

Solution.

$$
\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+1\right)} e^{-3 s}\right)=u(t-3) \mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+1\right)}\right)(t-3)
$$

On the other hand,

$$
\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+1\right)}\right)=\mathcal{L}^{-1}\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right)=\mathcal{L}^{-1}\left(\frac{1}{s}\right)-\mathcal{L}^{-1}\left(\frac{s}{s^{2}+1}\right)=1-\cos t
$$

Hence,

$$
\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+1\right)} e^{-3 s}\right)=u(t-3)(1-\cos (t-3))
$$

2. Solve the initial value problem $y^{\prime \prime}+y=u(t-3), y(0)=y^{\prime}(0)=0$ by the method of Laplace transform.

Solution. Taking Laplace transform

$$
s^{2} \mathcal{L}(y)+\mathcal{L}(y)=\mathcal{L}(u(t-3))=\frac{1}{s} e^{-3 s}
$$

Thus,

$$
\mathcal{L}(y)=\frac{1}{s\left(s^{2}+1\right)} e^{-3 s}
$$

Hence

$$
y=\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+1\right)} e^{-3 s}\right)=u(t-3)(1-\cos (t-3))
$$

