A 3 -kg mass is attached to a spring with stiffness $k=48 N / m$. The mass is displaced $1 / 2 \mathrm{~m}$ to the left of the equilibrium point and given a velocity of $2 \mathrm{~m} / \mathrm{sec}$ to the right. The damping force is negligible.

1. Neglecting external force, find the equation of the motion along with amplitude A and the initial angle φ.

Solution. Let $y(t)$ be the displacement of the mass at the time t. We have

$$
3 y "+48 y=0, \quad y(0)+-\frac{1}{2} \quad \text { and } \quad y^{\prime}(0)=2
$$

Soving $3 r^{2}+48=0$ we have $r \pm 4 i$. Therefore $y=A \sin (4 t+\varphi)$ and therefore $y^{\prime}=$ $4 A \cos (4 t+\varphi)$. Let $t=0: A \sin \varphi=-\frac{1}{2}$ and $4 A \cos \varphi=2$. Divide the first equation by the second equation: $\tan \varphi=-1$. So $\varphi=-\pi / 4$. From the second equation, $A \cos \varphi=\frac{1}{2}$. Hence

$$
A^{2}=A^{2} \cos ^{2} \varphi+A^{2} \sin ^{2} \varphi=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \quad \text { Therefore } A=\frac{1}{\sqrt{2}}
$$

Finally, $y=\frac{1}{\sqrt{2}} \sin \left(4 t-\frac{\pi}{4}\right)$
2. With the external force $F(t)=\cos \omega t$, find the external frequency ω that leads to resonance and set-up a special solution y_{p} to the equation of the motion in this case without identifying the constants.

Solution. The resonance frequency $\omega=4$.

$$
y_{p}=t\left(C_{1} \sin 4 t+C_{2} \cos 4 t\right)
$$

