Math 231	Quiz #7	Fall 2023	Name:
----------	---------	-----------	-------

A 3-kg mass is attached to a spring with stiffness k = 48N/m. The mass is displaced 1/2 m to the left of the equilibrium point and given a velocity of 2m/sec to the right. The damping force is negligible.

1. Neglecting external force, find the equation of the motion along with amplitude A and the initial angle φ .

Solution. Let y(t) be the displacement of the mass at the time t. We have

$$3y'' + 48y = 0$$
, $y(0) + -\frac{1}{2}$ and $y'(0) = 2$

Soving $3r^2 + 48 = 0$ we have $r \pm 4i$. Therefore $y = A\sin(4t + \varphi)$ and therefore $y' = 4A\cos(4t + \varphi)$. Let t = 0: $A\sin\varphi = -\frac{1}{2}$ and $4A\cos\varphi = 2$. Divide the first equation by the second equation: $\tan\varphi = -1$. So $\varphi = -\pi/4$. From the second equation, $A\cos\varphi = \frac{1}{2}$. Hence

$$A^{2} = A^{2} \cos^{2} \varphi + A^{2} \sin^{2} \varphi = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
 Therefore $A = \frac{1}{\sqrt{2}}$

Finally, $y = \frac{1}{\sqrt{2}}\sin(4t - \frac{\pi}{4})$

2. With the external force $F(t) = \cos \omega t$, find the external frequency ω that leads to resonance and set-up a special solution y_p to the equation of the motion in this case without identifying the constants.

Solution. The resonance frequency $\omega = 4$.

$$y_p = t(C_1 \sin 4t + C_2 \cos 4t)$$