1. Find the general solution for $t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0$.

Solution. Consider $r^{2}+(4-1) r+2=0$ or $r^{2}+3 r+2=0$. We have that $r_{1}=-1$ and $r_{2}=-2$. The general solution is: $y=C_{1} t^{-1}+C_{2} t^{-2}$.
2. Find the general solution for $t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=t^{-1}$.

Solution. We first find a special solution y_{p}. By variation of parameter we set $y_{p}=v_{1}(t) t^{-1}+v_{2}(t) t^{-2}$. So we have

$$
\left\{\begin{array} { l }
{ v _ { 1 } ^ { \prime } (t) t ^ { - 1 } + v _ { 2 } ^ { \prime } (t) t ^ { - 2 } = 0 } \\
{ - v _ { 1 } ^ { \prime } (t) t ^ { - 2 } - 2 v _ { 2 } ^ { \prime } (t) t ^ { - 3 } = \frac { t ^ { - 1 } } { t ^ { 2 } } = t ^ { - 3 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
v_{1}^{\prime}(t) t^{-1}+v_{2}^{\prime}(t) t^{-2}=0 \\
-v_{1}^{\prime}(t) t^{-1}-2 v_{2}^{\prime}(t) t^{-2}=t^{-2}
\end{array}\right.\right.
$$

Adding two equations together, $-v_{2}^{\prime}(t) t^{-2}=1$ or $v_{2}^{\prime}(t)=-1$. Bring it to the first equation, $v_{1}^{\prime}(t)=t^{-1}$. Hence, $v_{1}(t)=\ln t$ and $v_{2}(t)=-t$. Thus, $y_{p}=t^{-1} \ln t-t^{-1}$. Finally, the general solution is

$$
y=C_{1} t^{-1}+C_{2} t^{-2}+t^{-1} \ln t-t^{-1}
$$

